期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于生成模型的Q-learning二分类算法 被引量:1
1
作者 尚志刚 徐若灏 +2 位作者 乔康加 杨莉芳 李蒙蒙 《计算机应用研究》 CSCD 北大核心 2020年第11期3326-3329,3333,共5页
对于二分类问题,基于判别模型的分类器一般都是寻找一条最优判决边界,容易受到数据波动的影响。针对该问题提出一种基于生成模型的Q-learning二分类算法(BGQ-learning),将状态和动作分开编码,得到对应各类的判决函数,增加了决策空间的... 对于二分类问题,基于判别模型的分类器一般都是寻找一条最优判决边界,容易受到数据波动的影响。针对该问题提出一种基于生成模型的Q-learning二分类算法(BGQ-learning),将状态和动作分开编码,得到对应各类的判决函数,增加了决策空间的灵活性,同时在求解参数时,采用最小二乘时序差分(TD)算法和半梯度下降法的组合优化方法,加速了参数的收敛速度。设计实验对比了BGQ-learning算法与三种经典分类器以及一种新颖的分类器的分类性能,在UCI数据库七个数据集上的测试结果表明,该算法有着优良的稳定性以及良好的分类精确度。 展开更多
关键词 Q-LEARNING 生成模型 二分类 最小二乘时序差分算 半梯度下降法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部