期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于优化插值与差值神经网络算法的硅片刻蚀深度预测模型
被引量:
1
1
作者
黄涛
王飞
杨晔
《计算机应用》
CSCD
北大核心
2021年第S02期108-112,共5页
针对半导体加工工艺复杂、成本高、工艺数据量少,一般的人工神经网络(ANN)算法无法准确预测其加工工艺性能的问题,提出一种基于优化插值与差值神经网络(OIDNN)算法的适用于小样本的硅片刻蚀深度预测模型。首先,分别由实验得到刻蚀深度...
针对半导体加工工艺复杂、成本高、工艺数据量少,一般的人工神经网络(ANN)算法无法准确预测其加工工艺性能的问题,提出一种基于优化插值与差值神经网络(OIDNN)算法的适用于小样本的硅片刻蚀深度预测模型。首先,分别由实验得到刻蚀深度的实验数据,由计算机辅助设计(TCAD)技术仿真得到刻蚀深度的模拟数据,并划分为训练集、验证集和预测集;将TCAD模拟数据作为额外输入参数插入ANN1模型,同时,将实验数据与TCAD模拟数据的差值作为ANN2模型的输出参数,得到两份预测结果;最后将两份预测结果作为输入参数,经ANN3模型训练选择权重,得到最终预测结果。OIDNN算法在不同大小的样本数量下,所得预测刻蚀深度和实验刻蚀深度之间平均的均方误差(MSE)为0.009 5μm,相较于ANN减小80%以上,相较于自适应权值神经网络(AWNN)减小85%以上。实验结果表明,所提模型可以有效提高预测的准确度,提高算法的收敛速度,并且适用于小样本的工程应用场景。
展开更多
关键词
半导体加工工艺
机器学习
小样本
硅片刻蚀
神经网络
计算机辅助设计
在线阅读
下载PDF
职称材料
题名
基于优化插值与差值神经网络算法的硅片刻蚀深度预测模型
被引量:
1
1
作者
黄涛
王飞
杨晔
机构
上海师范大学信息与机电工程学院
上海智能教育大数据工程技术研究中心(上海师范大学)
出处
《计算机应用》
CSCD
北大核心
2021年第S02期108-112,共5页
基金
国家自然科学基金资助项目(51605298)。
文摘
针对半导体加工工艺复杂、成本高、工艺数据量少,一般的人工神经网络(ANN)算法无法准确预测其加工工艺性能的问题,提出一种基于优化插值与差值神经网络(OIDNN)算法的适用于小样本的硅片刻蚀深度预测模型。首先,分别由实验得到刻蚀深度的实验数据,由计算机辅助设计(TCAD)技术仿真得到刻蚀深度的模拟数据,并划分为训练集、验证集和预测集;将TCAD模拟数据作为额外输入参数插入ANN1模型,同时,将实验数据与TCAD模拟数据的差值作为ANN2模型的输出参数,得到两份预测结果;最后将两份预测结果作为输入参数,经ANN3模型训练选择权重,得到最终预测结果。OIDNN算法在不同大小的样本数量下,所得预测刻蚀深度和实验刻蚀深度之间平均的均方误差(MSE)为0.009 5μm,相较于ANN减小80%以上,相较于自适应权值神经网络(AWNN)减小85%以上。实验结果表明,所提模型可以有效提高预测的准确度,提高算法的收敛速度,并且适用于小样本的工程应用场景。
关键词
半导体加工工艺
机器学习
小样本
硅片刻蚀
神经网络
计算机辅助设计
Keywords
semiconductor processing technology
machine learning
small sample
silicon wafer etching
neural network
Technology Computer Aided Design(TCAD)
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于优化插值与差值神经网络算法的硅片刻蚀深度预测模型
黄涛
王飞
杨晔
《计算机应用》
CSCD
北大核心
2021
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部