期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于优化插值与差值神经网络算法的硅片刻蚀深度预测模型 被引量:1
1
作者 黄涛 王飞 杨晔 《计算机应用》 CSCD 北大核心 2021年第S02期108-112,共5页
针对半导体加工工艺复杂、成本高、工艺数据量少,一般的人工神经网络(ANN)算法无法准确预测其加工工艺性能的问题,提出一种基于优化插值与差值神经网络(OIDNN)算法的适用于小样本的硅片刻蚀深度预测模型。首先,分别由实验得到刻蚀深度... 针对半导体加工工艺复杂、成本高、工艺数据量少,一般的人工神经网络(ANN)算法无法准确预测其加工工艺性能的问题,提出一种基于优化插值与差值神经网络(OIDNN)算法的适用于小样本的硅片刻蚀深度预测模型。首先,分别由实验得到刻蚀深度的实验数据,由计算机辅助设计(TCAD)技术仿真得到刻蚀深度的模拟数据,并划分为训练集、验证集和预测集;将TCAD模拟数据作为额外输入参数插入ANN1模型,同时,将实验数据与TCAD模拟数据的差值作为ANN2模型的输出参数,得到两份预测结果;最后将两份预测结果作为输入参数,经ANN3模型训练选择权重,得到最终预测结果。OIDNN算法在不同大小的样本数量下,所得预测刻蚀深度和实验刻蚀深度之间平均的均方误差(MSE)为0.009 5μm,相较于ANN减小80%以上,相较于自适应权值神经网络(AWNN)减小85%以上。实验结果表明,所提模型可以有效提高预测的准确度,提高算法的收敛速度,并且适用于小样本的工程应用场景。 展开更多
关键词 半导体加工工艺 机器学习 小样本 硅片刻蚀 神经网络 计算机辅助设计
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部