为研究聚乙烯基三苯乙炔基硅烷树脂的热分解机理,利用TG-DTG技术探讨了聚乙烯基三苯乙炔基硅烷树脂的非等温热分解过程.借助非模型拟合法和模型拟合法分析了聚乙烯基三苯乙炔基硅烷树脂(PVTPES)的热分解行为,建立了动力学函数,得到了聚...为研究聚乙烯基三苯乙炔基硅烷树脂的热分解机理,利用TG-DTG技术探讨了聚乙烯基三苯乙炔基硅烷树脂的非等温热分解过程.借助非模型拟合法和模型拟合法分析了聚乙烯基三苯乙炔基硅烷树脂(PVTPES)的热分解行为,建立了动力学函数,得到了聚乙烯基三苯乙炔基硅烷树脂的热分解反应机理.结果表明,6种热分析方法计算得到PVTPES的热分解活化能(E)在240 k J/mol左右,指前因子lg A=15.51,机理符合三维(3D)扩散控制机理.聚合物PVTPES的热分解过程分析进一步证实芳炔单体的热聚合为环三聚反应.展开更多
为研究聚乙烯基三苯乙炔基硅烷树脂的热性能,以苯乙炔和乙烯基三氯硅烷为原料,运用格利雅反应合成了乙烯基三苯乙炔基硅烷单体,并通过红外(FT-IR)、核磁(1H-NMR,13C-NMR,29Si-NMR)证实了合成产物.以此单体为原料,通过热聚合法制备了聚...为研究聚乙烯基三苯乙炔基硅烷树脂的热性能,以苯乙炔和乙烯基三氯硅烷为原料,运用格利雅反应合成了乙烯基三苯乙炔基硅烷单体,并通过红外(FT-IR)、核磁(1H-NMR,13C-NMR,29Si-NMR)证实了合成产物.以此单体为原料,通过热聚合法制备了聚乙烯基三苯乙炔基硅烷树脂,并采用TGA-DTG研究该聚合物的热分解动力学,计算了相应动力学参数.结果表明:该树脂的热分解温度(Td5%)在550℃左右,800℃时聚合物的残炭率约80%;用Kissinger法和Ozawa法求得的聚合物热分解活化能分别为266.55和236.89 k J/mol;用Crane法求得聚合物的热分解反应级数为0.93,近似为一级反应.展开更多
借助流变仪研究了苯基三苯乙炔基硅烷(PTPES)、乙烯基三苯乙炔基硅烷(VTPES)、二苯基二苯乙炔基硅烷(BPBPES)3种单体及其聚合物(TSAR)的流变性能,并利用热分析技术分析了共聚物的反应动力学,建立了热分解机理函数。流变分析表明,3种单...借助流变仪研究了苯基三苯乙炔基硅烷(PTPES)、乙烯基三苯乙炔基硅烷(VTPES)、二苯基二苯乙炔基硅烷(BPBPES)3种单体及其聚合物(TSAR)的流变性能,并利用热分析技术分析了共聚物的反应动力学,建立了热分解机理函数。流变分析表明,3种单体加工窗口超过150℃,具有良好的加工性能;热重分析显示,800℃时聚合物残炭率在70%左右;8种动力学分析证实,聚合物热分解反应级数n=4,反应活化能E=131.2 k J/mol。展开更多
文摘为研究聚乙烯基三苯乙炔基硅烷树脂的热分解机理,利用TG-DTG技术探讨了聚乙烯基三苯乙炔基硅烷树脂的非等温热分解过程.借助非模型拟合法和模型拟合法分析了聚乙烯基三苯乙炔基硅烷树脂(PVTPES)的热分解行为,建立了动力学函数,得到了聚乙烯基三苯乙炔基硅烷树脂的热分解反应机理.结果表明,6种热分析方法计算得到PVTPES的热分解活化能(E)在240 k J/mol左右,指前因子lg A=15.51,机理符合三维(3D)扩散控制机理.聚合物PVTPES的热分解过程分析进一步证实芳炔单体的热聚合为环三聚反应.
文摘为研究聚乙烯基三苯乙炔基硅烷树脂的热性能,以苯乙炔和乙烯基三氯硅烷为原料,运用格利雅反应合成了乙烯基三苯乙炔基硅烷单体,并通过红外(FT-IR)、核磁(1H-NMR,13C-NMR,29Si-NMR)证实了合成产物.以此单体为原料,通过热聚合法制备了聚乙烯基三苯乙炔基硅烷树脂,并采用TGA-DTG研究该聚合物的热分解动力学,计算了相应动力学参数.结果表明:该树脂的热分解温度(Td5%)在550℃左右,800℃时聚合物的残炭率约80%;用Kissinger法和Ozawa法求得的聚合物热分解活化能分别为266.55和236.89 k J/mol;用Crane法求得聚合物的热分解反应级数为0.93,近似为一级反应.
文摘借助流变仪研究了苯基三苯乙炔基硅烷(PTPES)、乙烯基三苯乙炔基硅烷(VTPES)、二苯基二苯乙炔基硅烷(BPBPES)3种单体及其聚合物(TSAR)的流变性能,并利用热分析技术分析了共聚物的反应动力学,建立了热分解机理函数。流变分析表明,3种单体加工窗口超过150℃,具有良好的加工性能;热重分析显示,800℃时聚合物残炭率在70%左右;8种动力学分析证实,聚合物热分解反应级数n=4,反应活化能E=131.2 k J/mol。