期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种改进的医疗文本分类模型:LS-GRU 被引量:8
1
作者 李强 李瑶坤 +1 位作者 夏书月 康雁 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第7期938-942,961,共6页
为了帮助低年资医生阅读胸部CT影像,并更加精确高效地为临床医生反馈影像报告结果,提出一种改进GRU深度学习框架LS-GRU,用来解决影像报告文本分类问题,即可以根据影像科医生描述,自动反馈给临床医生诊断建议.数据来源于呼吸科影像报告1 ... 为了帮助低年资医生阅读胸部CT影像,并更加精确高效地为临床医生反馈影像报告结果,提出一种改进GRU深度学习框架LS-GRU,用来解决影像报告文本分类问题,即可以根据影像科医生描述,自动反馈给临床医生诊断建议.数据来源于呼吸科影像报告1 168例,选择了两种描述相近的疾病(肺气肿和肺炎)进行分类,其中肺气肿患者报告大约652例,肺炎约516例.分别验证GRU、BiGRU及LSTM等模型,实验结果表明,LS-GRU模型分类更精确,且具有较高的鲁棒性. 展开更多
关键词 深度学习 医疗文本分类 GRU 慢阻肺 LSTM
在线阅读 下载PDF
基于Vocab-GCN的中文医疗文本分类方法 被引量:2
2
作者 杜永兴 孙彤彤 +3 位作者 周李涌 李灵芳 李宝山 弓彦章 《传感器与微系统》 CSCD 北大核心 2023年第8期152-156,共5页
提出一种应用于中文医疗文本分类的基于词汇级的图卷积神经网络(Vocab-GCN)模型。该模型不仅可以直接对医学文本关系图进行学习,在图嵌入中保存关系图的全局结构信息,得到含有语义网络的深层病理关系,而且仅依靠两层卷积神经网络(CNN)... 提出一种应用于中文医疗文本分类的基于词汇级的图卷积神经网络(Vocab-GCN)模型。该模型不仅可以直接对医学文本关系图进行学习,在图嵌入中保存关系图的全局结构信息,得到含有语义网络的深层病理关系,而且仅依靠两层卷积神经网络(CNN)就展现出了良好的学习优势。实验结果表明:基于Vocab-GCN的中文医疗文本分类方法相比于最优的深度学习方法提高了6.17%的分类准确率,适用于患者初步对疾病类型做出诊断。 展开更多
关键词 图卷积神经网络 深度学习 中文医疗文本分类 疾病诊断
在线阅读 下载PDF
基于神经网络的医疗文本分类研究 被引量:13
3
作者 许浪 李代伟 +3 位作者 张海清 唐聃 何磊 于曦 《计算机工程与科学》 CSCD 北大核心 2023年第6期1116-1122,共7页
传统的医学文本数据分类方法忽略了文本的上下文关系,每个词之间相互独立,无法表示语义信息,文本描述和分类效果差;并且特征工程需要人工干预,因此泛化能力不强。针对医疗文本数据分类效率低和精度低的问题,提出了一种基于Transformer... 传统的医学文本数据分类方法忽略了文本的上下文关系,每个词之间相互独立,无法表示语义信息,文本描述和分类效果差;并且特征工程需要人工干预,因此泛化能力不强。针对医疗文本数据分类效率低和精度低的问题,提出了一种基于Transformer双向编码器表示BERT、卷积神经网络CNN和双向长短期记忆BiLSTM神经网络的医学文本分类模型CMNN。该模型使用BERT训练词向量,结合CNN和BiLSTM,捕捉局部潜在特征和上下文信息。最后,将CMNN模型与传统的深度学习模型TextCNN和TextRNN在准确率、精确率、召回率和F1值方面进行了比较。实验结果表明,CMNN模型在所有评价指标上整体优于其他模型,准确率提高了1.69%~5.91%。 展开更多
关键词 自然语言处理 医疗文本分类 BERT CNN BiLSTM
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部