期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
结合CNN与Transformer的双流U型医学图像分割网络
1
作者 杨超荣 张朝晖 《小型微型计算机系统》 北大核心 2025年第8期2016-2026,共11页
为有效利用医学输入图像的局部特征与全局语义信息,从而获得边界更清晰、语义结构更完整的图像分割结果,提出一种结合CNN与Transformer的双流U型医学图像分割网络(DS-UNet).首先,双流U型结构由用于局部特征提取的CNN分支和进行全局特征... 为有效利用医学输入图像的局部特征与全局语义信息,从而获得边界更清晰、语义结构更完整的图像分割结果,提出一种结合CNN与Transformer的双流U型医学图像分割网络(DS-UNet).首先,双流U型结构由用于局部特征提取的CNN分支和进行全局特征提取的Swin Transformer分支构成;之后,为实现局部特征与全局特征的优势互补,以通道注意力和空间注意力为基础,提出了CNN和Transformer的融合模块(CTFB),并将其作为DS-UNet的重要组件,用于特征处理3个关键阶段双分支的信息交互与特征融合;此外,还提出一种用于双分支特征图与浅层多尺度特征图融合的跨分支信息增强模块(CBIE),为后续分割结果的生成做进一步的全局语义信息增强与浅层细节补充.以Dice相似系数与IoU值为评价指标,在GlaS、MoNuSeg、QaTa-COV19以及Synapse 4个公开数据集的对比实验表明,DS-UNet优于其他大部分竞争算法,并在GlaS、MoNuSeg以及Synapse数据集上性能最优. 展开更多
关键词 医学图像语义分割 双流U型结构 Swin Transformer CNN 特征融合
在线阅读 下载PDF
显著性引导及不确定性监督的深度编解码网络
2
作者 王雪 李占山 陈海鹏 《软件学报》 EI CSCD 北大核心 2022年第9期3165-3179,共15页
基于U-Net的编码-解码网络及其变体网络在医学图像语义分割任务中取得了卓越的分割性能.然而,网络在特征提取过程中丢失了部分空间细节信息,影响了分割精度.另一方面,在多模态的医学图像语义分割任务中,这些模型的泛化能力和鲁棒性不理... 基于U-Net的编码-解码网络及其变体网络在医学图像语义分割任务中取得了卓越的分割性能.然而,网络在特征提取过程中丢失了部分空间细节信息,影响了分割精度.另一方面,在多模态的医学图像语义分割任务中,这些模型的泛化能力和鲁棒性不理想.针对以上问题,提出一种显著性引导及不确定性监督的深度卷积编解码网络,以解决多模态医学图像语义分割问题.该算法将初始生成的显著图和不确定概率图作为监督信息来优化语义分割网络的参数.首先,通过显著性检测网络生成显著图,初步定位图像中的目标区域;然后,根据显著图计算不确定分类的像素点集合,生成不确定概率图;最后,将显著图和不确定概率图与原图像一同送入多尺度特征融合网络,引导网络关注目标区域特征的学习,同时增强网络对不确定分类区域和复杂边界的表征能力,以提升网络的分割性能.实验结果表明,所提算法能够捕获更多的语义信息,在多模态医学图像语义分割任务中优于其他的语义分割算法,并具有较好的泛化能力和鲁棒性. 展开更多
关键词 编码-解码网络 显著图 不确定概率图 医学图像语义分割 多模态
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部