目的探讨平均动脉压(mean arterial pressure,MAP)变异度与重症患者的重症医学科(intensive care unit,ICU)病死率之间的关系。方法回顾性分析重症监护医学信息数据库(Medical Information Mart for Intensive Care,MIMIC)-Ⅲ中38852例...目的探讨平均动脉压(mean arterial pressure,MAP)变异度与重症患者的重症医学科(intensive care unit,ICU)病死率之间的关系。方法回顾性分析重症监护医学信息数据库(Medical Information Mart for Intensive Care,MIMIC)-Ⅲ中38852例入ICU的重症患者的临床资料,计算入ICU后24 h内记录的MAP的变异系数作为MAP变异度,采用一般线性回归观察入ICU 24 h内MAP变异度与重症患者ICU病死率之间的相关性,并采用受试者工作特征(receiver operating characteristic,ROC)曲线下面积(area under curve,AUC)评估MAP变异度预测重症患者ICU病死率的能力。结果入ICU 24 h的MAP变异度与ICU病死率之间有很好的相关性(R2=0.860,P<0.001),MAP变异度越大,ICU病死率越高。24h的MAP变异程度预测ICU病死率的AUC为0.61。结论重症患者入ICU 24 h内的MAP变异度与ICU病死率有很好的相关性,MAP变异度越大,ICU病死率越高;MAP变异度能够为简单快速预测危重患者的ICU病死率提供一定的信息。展开更多
目的构建可预测心脏骤停患者住院期间死亡风险的机器学习模型,并对其进行解释。方法提取美国重症监护医学信息数据库Ⅳ(Medical Information Mart for Intensive Care databaseⅣ,MIMIC-Ⅳ)2.0中心脏骤停患者转入ICU 24 h内首次临床资...目的构建可预测心脏骤停患者住院期间死亡风险的机器学习模型,并对其进行解释。方法提取美国重症监护医学信息数据库Ⅳ(Medical Information Mart for Intensive Care databaseⅣ,MIMIC-Ⅳ)2.0中心脏骤停患者转入ICU 24 h内首次临床资料及住院期间转归,基于机器学习算法构建6种可预测心脏骤停患者院内死亡风险的模型,包括XGBoost模型、轻量级梯度提升机(light gradient boosting machine,LGBM)模型、决策树(decision tree,DT)模型、K近邻(K-nearest neighbor,KNN)模型、Logistic回归模型、随机森林(random forest,RF)模型。采用受试者操作特征(receiver operator characteristic,ROC)曲线、临床决策曲线及校准曲线对模型进行评价,并采用Shapley加性解释(Shapley additive explanation,SHAP)算法评估不同临床特征对最优模型的影响,以增加模型的可解释性。结果共1465例符合纳入与排除标准的心脏骤停患者入选本研究。其中住院期间存活773例、死亡692例。经筛选,共纳入82个临床特征用于机器学习模型构建。模型评价结果显示,相较于其余5种模型,LGBM模型预测心脏骤停患者院内死亡的曲线下面积(area under the curve,AUC)更高[0.834(95%CI:0.688~0.894)],且相对于Logistic回归模型、XGBoost模型,其对死亡风险的预测准确性更高(校准度:0.166),临床决策性能更优,整体性能最佳。SHAP算法分析显示,对LGBM模型输出结果影响最大的3个临床特征分别为格拉斯哥睁眼反应评分、碳酸氢盐水平、白细胞计数。结论基于大型公共医疗卫生数据库建立的可预测心脏骤停患者住院期间死亡风险的机器学习模型中,LGBM模型性能最优,其可辅助临床进行更高效的疾病管理和更精准的医疗干预。展开更多
目的:本研究旨在评估白蛋白校正阴离子间隙(albumin-corrected anion gap,ACAG)与急性胰腺炎(acute pancreatitis,AP)患者短期至长期死亡结局之间的关联。方法:这项回顾性研究基于美国重症监护医学信息数据库(Medical Information Mart ...目的:本研究旨在评估白蛋白校正阴离子间隙(albumin-corrected anion gap,ACAG)与急性胰腺炎(acute pancreatitis,AP)患者短期至长期死亡结局之间的关联。方法:这项回顾性研究基于美国重症监护医学信息数据库(Medical Information Mart for Intensive Care,MIMIC)-Ⅳ,将诊断为AP并入住重症监护病房的成人患者纳入了研究,通过COX回归风险分析、受试者工作特征(receiver operating characteristic,ROC)曲线分析、卡普兰-迈耶(Kaplan-Meier,K-M)生存曲线分析、限制性立方样条以及亚组分析判断ACAG对AP患者死亡结局的预测能力。结果:本研究共入组444例患者,根据入院后28 d的患者死亡情况将患者分为存活组(412例)及死亡组(32例),入院后28 d死亡率为7.2%。多因素COX回归显示ACAG是AP患者入院28 d全因死亡率的独立预测因子(HR=1.18;95%CI=1.05~1.32),而在90 d(HR=1.05,95%CI=0.97~1.14),180 d(HR=1.01,95%CI=0.94~1.09)和1年(HR=1.02,95%CI=0.95~1.10)的预后判断能力上,ACAG并不能作为AP患者死亡结局的独立预测因子。ROC曲线分析显示ACAG预测28 d死亡结局的曲线下面积(area under the curve,AUC)为0.732(95%CI=0.632~0.832),优于AG[AUC=0.665(95%CI=0.550~0.781)]和血清白蛋白(serum albumin,ALB)[AUC=0.655(95%CI=0.550~0.761)],与序贯器官衰竭评分(sequential organ failure score,SOFA)相近[AUC=0.745(95%CI=0.651~0.838)]。根据ROC曲线得出ACAG的最佳界值为21.375。将ACAG以21.375分为高值组与常值组,K-M分析显示ACAG高值患者死亡率高于ACAG常值患者(P<0.001)。亚组分析显示结果稳定。结论:ACAG可作为AP患者入院后28 d全因死亡率的独立预测因子,其检验效能优于AG及ALB,与SOFA相近,但与AP患者90 d、180 d,1年死亡结局的相关性并不具有显著性。展开更多
目的:鉴于脓毒症的高发病率和高病死率,早期识别高风险患者并及时干预至关重要,而现有死亡风险预测模型在操作、适用性和预测长期预后等方面均存在不足。本研究旨在探讨脓毒症患者死亡的危险因素,构建近期和远期死亡风险预测模型。方法...目的:鉴于脓毒症的高发病率和高病死率,早期识别高风险患者并及时干预至关重要,而现有死亡风险预测模型在操作、适用性和预测长期预后等方面均存在不足。本研究旨在探讨脓毒症患者死亡的危险因素,构建近期和远期死亡风险预测模型。方法:从美国重症监护医学信息数据库IV(Medical Information Mart for Intensive Care-IV,MIMIC-IV)中选取符合脓毒症3.0诊断标准的人群,按7?3的比例随机分为建模组和验证组,分析患者的基线资料。采用单因素Cox回归分析和全子集回归确定脓毒症患者死亡的危险因素并筛选出构建预测模型的变量。分别用时间依赖性曲线下面积(area under the curve,AUC)、校准曲线和决策曲线评估模型的区分度、校准度和临床实用性。结果:共纳入14240例脓毒症患者,28 d和1年病死率分别为21.45%(3054例)和36.50%(5198例)。高龄、女性、高感染相关器官衰竭评分(sepsis-related organ failure assessment,SOFA)、高简明急性生理学评分(simplified acute physiology score II,SAPS II)、心率快、呼吸频率快、脓毒症休克、充血性心力衰竭、慢性阻塞性肺疾病、肝脏疾病、肾脏疾病、糖尿病、恶性肿瘤、高白细胞计数(white blood cell count,WBC)、长凝血酶原时间(prothrombin time,PT)、高血肌酐(serum creatinine,SCr)水平均为脓毒症死亡的危险因素(均P<0.05)。由PT、呼吸频率、体温、合并恶性肿瘤、合并肝脏疾病、脓毒症休克、SAPS II及年龄8个变量构建的模型,其28 d和1年生存的AUC分别为0.717(95%CI 0.710~0.724)和0.716(95%CI 0.707~0.725)。校准曲线和决策曲线表明该模型具有良好的校准度及较好的临床应用价值。结论:基于MIMIC-IV建立的脓毒症患者近期和远期死亡风险预测模型有较好的识别能力,对患者预后风险评估及干预治疗具有一定的临床参考意义。展开更多
文摘目的探讨平均动脉压(mean arterial pressure,MAP)变异度与重症患者的重症医学科(intensive care unit,ICU)病死率之间的关系。方法回顾性分析重症监护医学信息数据库(Medical Information Mart for Intensive Care,MIMIC)-Ⅲ中38852例入ICU的重症患者的临床资料,计算入ICU后24 h内记录的MAP的变异系数作为MAP变异度,采用一般线性回归观察入ICU 24 h内MAP变异度与重症患者ICU病死率之间的相关性,并采用受试者工作特征(receiver operating characteristic,ROC)曲线下面积(area under curve,AUC)评估MAP变异度预测重症患者ICU病死率的能力。结果入ICU 24 h的MAP变异度与ICU病死率之间有很好的相关性(R2=0.860,P<0.001),MAP变异度越大,ICU病死率越高。24h的MAP变异程度预测ICU病死率的AUC为0.61。结论重症患者入ICU 24 h内的MAP变异度与ICU病死率有很好的相关性,MAP变异度越大,ICU病死率越高;MAP变异度能够为简单快速预测危重患者的ICU病死率提供一定的信息。
文摘目的构建可预测心脏骤停患者住院期间死亡风险的机器学习模型,并对其进行解释。方法提取美国重症监护医学信息数据库Ⅳ(Medical Information Mart for Intensive Care databaseⅣ,MIMIC-Ⅳ)2.0中心脏骤停患者转入ICU 24 h内首次临床资料及住院期间转归,基于机器学习算法构建6种可预测心脏骤停患者院内死亡风险的模型,包括XGBoost模型、轻量级梯度提升机(light gradient boosting machine,LGBM)模型、决策树(decision tree,DT)模型、K近邻(K-nearest neighbor,KNN)模型、Logistic回归模型、随机森林(random forest,RF)模型。采用受试者操作特征(receiver operator characteristic,ROC)曲线、临床决策曲线及校准曲线对模型进行评价,并采用Shapley加性解释(Shapley additive explanation,SHAP)算法评估不同临床特征对最优模型的影响,以增加模型的可解释性。结果共1465例符合纳入与排除标准的心脏骤停患者入选本研究。其中住院期间存活773例、死亡692例。经筛选,共纳入82个临床特征用于机器学习模型构建。模型评价结果显示,相较于其余5种模型,LGBM模型预测心脏骤停患者院内死亡的曲线下面积(area under the curve,AUC)更高[0.834(95%CI:0.688~0.894)],且相对于Logistic回归模型、XGBoost模型,其对死亡风险的预测准确性更高(校准度:0.166),临床决策性能更优,整体性能最佳。SHAP算法分析显示,对LGBM模型输出结果影响最大的3个临床特征分别为格拉斯哥睁眼反应评分、碳酸氢盐水平、白细胞计数。结论基于大型公共医疗卫生数据库建立的可预测心脏骤停患者住院期间死亡风险的机器学习模型中,LGBM模型性能最优,其可辅助临床进行更高效的疾病管理和更精准的医疗干预。
文摘目的:本研究旨在评估白蛋白校正阴离子间隙(albumin-corrected anion gap,ACAG)与急性胰腺炎(acute pancreatitis,AP)患者短期至长期死亡结局之间的关联。方法:这项回顾性研究基于美国重症监护医学信息数据库(Medical Information Mart for Intensive Care,MIMIC)-Ⅳ,将诊断为AP并入住重症监护病房的成人患者纳入了研究,通过COX回归风险分析、受试者工作特征(receiver operating characteristic,ROC)曲线分析、卡普兰-迈耶(Kaplan-Meier,K-M)生存曲线分析、限制性立方样条以及亚组分析判断ACAG对AP患者死亡结局的预测能力。结果:本研究共入组444例患者,根据入院后28 d的患者死亡情况将患者分为存活组(412例)及死亡组(32例),入院后28 d死亡率为7.2%。多因素COX回归显示ACAG是AP患者入院28 d全因死亡率的独立预测因子(HR=1.18;95%CI=1.05~1.32),而在90 d(HR=1.05,95%CI=0.97~1.14),180 d(HR=1.01,95%CI=0.94~1.09)和1年(HR=1.02,95%CI=0.95~1.10)的预后判断能力上,ACAG并不能作为AP患者死亡结局的独立预测因子。ROC曲线分析显示ACAG预测28 d死亡结局的曲线下面积(area under the curve,AUC)为0.732(95%CI=0.632~0.832),优于AG[AUC=0.665(95%CI=0.550~0.781)]和血清白蛋白(serum albumin,ALB)[AUC=0.655(95%CI=0.550~0.761)],与序贯器官衰竭评分(sequential organ failure score,SOFA)相近[AUC=0.745(95%CI=0.651~0.838)]。根据ROC曲线得出ACAG的最佳界值为21.375。将ACAG以21.375分为高值组与常值组,K-M分析显示ACAG高值患者死亡率高于ACAG常值患者(P<0.001)。亚组分析显示结果稳定。结论:ACAG可作为AP患者入院后28 d全因死亡率的独立预测因子,其检验效能优于AG及ALB,与SOFA相近,但与AP患者90 d、180 d,1年死亡结局的相关性并不具有显著性。
文摘目的:鉴于脓毒症的高发病率和高病死率,早期识别高风险患者并及时干预至关重要,而现有死亡风险预测模型在操作、适用性和预测长期预后等方面均存在不足。本研究旨在探讨脓毒症患者死亡的危险因素,构建近期和远期死亡风险预测模型。方法:从美国重症监护医学信息数据库IV(Medical Information Mart for Intensive Care-IV,MIMIC-IV)中选取符合脓毒症3.0诊断标准的人群,按7?3的比例随机分为建模组和验证组,分析患者的基线资料。采用单因素Cox回归分析和全子集回归确定脓毒症患者死亡的危险因素并筛选出构建预测模型的变量。分别用时间依赖性曲线下面积(area under the curve,AUC)、校准曲线和决策曲线评估模型的区分度、校准度和临床实用性。结果:共纳入14240例脓毒症患者,28 d和1年病死率分别为21.45%(3054例)和36.50%(5198例)。高龄、女性、高感染相关器官衰竭评分(sepsis-related organ failure assessment,SOFA)、高简明急性生理学评分(simplified acute physiology score II,SAPS II)、心率快、呼吸频率快、脓毒症休克、充血性心力衰竭、慢性阻塞性肺疾病、肝脏疾病、肾脏疾病、糖尿病、恶性肿瘤、高白细胞计数(white blood cell count,WBC)、长凝血酶原时间(prothrombin time,PT)、高血肌酐(serum creatinine,SCr)水平均为脓毒症死亡的危险因素(均P<0.05)。由PT、呼吸频率、体温、合并恶性肿瘤、合并肝脏疾病、脓毒症休克、SAPS II及年龄8个变量构建的模型,其28 d和1年生存的AUC分别为0.717(95%CI 0.710~0.724)和0.716(95%CI 0.707~0.725)。校准曲线和决策曲线表明该模型具有良好的校准度及较好的临床应用价值。结论:基于MIMIC-IV建立的脓毒症患者近期和远期死亡风险预测模型有较好的识别能力,对患者预后风险评估及干预治疗具有一定的临床参考意义。