在毕达哥拉斯犹豫模糊数的距离基础上,定义毕达哥拉斯犹豫模糊集(Pythagorean hesitant fussy set,PHFS)的加权距离测度和有序加权距离测度,在兼顾属性权重和位置权重的基础上,提出广义PHFS混合加权距离测度(D_(GPHFHWA)),并研究其性质...在毕达哥拉斯犹豫模糊数的距离基础上,定义毕达哥拉斯犹豫模糊集(Pythagorean hesitant fussy set,PHFS)的加权距离测度和有序加权距离测度,在兼顾属性权重和位置权重的基础上,提出广义PHFS混合加权距离测度(D_(GPHFHWA)),并研究其性质和特殊形式。针对属性值为毕达哥拉斯犹豫模糊数且属性权重未知的多属性决策问题,利用毕达哥拉斯犹豫模糊指数熵确定属性权重,并结合逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)思想,提出基于D_(GPHFHWA)测度的决策方法。最后,通过实例验证所提方法是有效、合理的。展开更多
针对传统故障模式和影响分析(failure mode and effect analysis,FMEA)方法存在评价使用精确数量化造成专家风险评估信息的丢失、忽略风险指标之间的相对重要性以及由于专家有限理性导致的评价固有的随机性等问题,利用区间值直觉模糊集...针对传统故障模式和影响分析(failure mode and effect analysis,FMEA)方法存在评价使用精确数量化造成专家风险评估信息的丢失、忽略风险指标之间的相对重要性以及由于专家有限理性导致的评价固有的随机性等问题,利用区间值直觉模糊集和云模型构建了一种改进的FMEA风险评估方法。首先,引入区间值直觉模糊集(IVIFS)来描述专家评价信息的复杂性和不确定性,通过运用区间值直觉模糊熵,计算专家权重和风险因子的权重;其次,采用云模型的方法,通过比较各支持云模型和反对云模型与正、负理想云模型的正、负相似度,获得故障模式评价值的综合相似度,通过对综合相似度大小排序得到各故障模式风险排序;最后,以自动扶梯的梯级、踏板和胶带风险评估为例进行分析,验证该评估方法的实用性和可行性。展开更多
在区间值毕达哥拉斯模糊环境下的多属性决策中,针对决策过程一般未考虑决策人偏好习惯和风险规避的问题,同时为解决现有得分函数忽略区间犹豫度对决策影响的情况,提出了基于改进得分函数和前景理论的区间值毕达哥拉斯模糊多属性决策方...在区间值毕达哥拉斯模糊环境下的多属性决策中,针对决策过程一般未考虑决策人偏好习惯和风险规避的问题,同时为解决现有得分函数忽略区间犹豫度对决策影响的情况,提出了基于改进得分函数和前景理论的区间值毕达哥拉斯模糊多属性决策方法。首先,对区间值毕达哥拉斯模糊集(interval-valued Pythagorean fuzzy set, IVPFS)现有得分函数深入分析,定义一种改进后的新得分函数,并证明其相关定理和性质。其次,将新得分函数应用于区间值毕达哥拉斯模糊多属性决策问题中,得出各备选方案在各属性下的新得分函数,基于熵权逼近理想解排序法(technique for order preference by similarity to ideal soution, TOPSIS)确定正、负理想方案的得分函数集。然后,引入前景理论利用前景价值函数对决策人由于损益表现出的主观感受进行描述,得出备选方案的综合损益值,结合各属性权重融合不同方案的综合损益比,通过对比综合损益比大小得出最优方案。最后,利用算例验证了该改进方法的正确性和有效性,展示了与原得分函数的对比分析结果,为多属性决策问题提供了新的技术途径。展开更多
文摘在毕达哥拉斯犹豫模糊数的距离基础上,定义毕达哥拉斯犹豫模糊集(Pythagorean hesitant fussy set,PHFS)的加权距离测度和有序加权距离测度,在兼顾属性权重和位置权重的基础上,提出广义PHFS混合加权距离测度(D_(GPHFHWA)),并研究其性质和特殊形式。针对属性值为毕达哥拉斯犹豫模糊数且属性权重未知的多属性决策问题,利用毕达哥拉斯犹豫模糊指数熵确定属性权重,并结合逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)思想,提出基于D_(GPHFHWA)测度的决策方法。最后,通过实例验证所提方法是有效、合理的。
文摘针对传统故障模式和影响分析(failure mode and effect analysis,FMEA)方法存在评价使用精确数量化造成专家风险评估信息的丢失、忽略风险指标之间的相对重要性以及由于专家有限理性导致的评价固有的随机性等问题,利用区间值直觉模糊集和云模型构建了一种改进的FMEA风险评估方法。首先,引入区间值直觉模糊集(IVIFS)来描述专家评价信息的复杂性和不确定性,通过运用区间值直觉模糊熵,计算专家权重和风险因子的权重;其次,采用云模型的方法,通过比较各支持云模型和反对云模型与正、负理想云模型的正、负相似度,获得故障模式评价值的综合相似度,通过对综合相似度大小排序得到各故障模式风险排序;最后,以自动扶梯的梯级、踏板和胶带风险评估为例进行分析,验证该评估方法的实用性和可行性。
文摘在区间值毕达哥拉斯模糊环境下的多属性决策中,针对决策过程一般未考虑决策人偏好习惯和风险规避的问题,同时为解决现有得分函数忽略区间犹豫度对决策影响的情况,提出了基于改进得分函数和前景理论的区间值毕达哥拉斯模糊多属性决策方法。首先,对区间值毕达哥拉斯模糊集(interval-valued Pythagorean fuzzy set, IVPFS)现有得分函数深入分析,定义一种改进后的新得分函数,并证明其相关定理和性质。其次,将新得分函数应用于区间值毕达哥拉斯模糊多属性决策问题中,得出各备选方案在各属性下的新得分函数,基于熵权逼近理想解排序法(technique for order preference by similarity to ideal soution, TOPSIS)确定正、负理想方案的得分函数集。然后,引入前景理论利用前景价值函数对决策人由于损益表现出的主观感受进行描述,得出备选方案的综合损益值,结合各属性权重融合不同方案的综合损益比,通过对比综合损益比大小得出最优方案。最后,利用算例验证了该改进方法的正确性和有效性,展示了与原得分函数的对比分析结果,为多属性决策问题提供了新的技术途径。
文摘本文首先提出群区间直觉模糊有序加权几何(groupinterval-valuedintuitionistic fuzzy orderedweighted geometric,GIVIFOWG)算子和群区间直觉模糊有序加权平均(group interval-valued intuitionistic fuzzy ordered weighted averaging,GIVIFOWA)算子.利用GIVIFOWG算子或GIVIFOWA算子聚集群的决策矩阵以获得方案在属性上的综合区间直觉模糊决策矩阵(collectiveinterval-valuedintuitionistic fuzzy decision-matrix,CIVIFDM).然后定义了一个考虑犹豫度的区间直觉模糊熵(interval-valuedintuitionistic fuzzyentropy,IVIFE);通过熵衡量每个属性所含的信息来求解属性权重.最后,提出基于可能度的接近理想解的区间排序法(interval technique for order preference by similarity to an ideal solution,ITOPSIS)和区间得分函数法.在ITOPSIS法中,依据区间距离公式计算候选方案和理想方案的属性加权区间距离,进而采用ITOPSIS准则对各方案进行排序;在区间得分函数法中,算出CIVIFDM中各方案的得分值以及精确值,然后利用区间得分准则对各方案进行排序.实验结果验证了决策方法的有效性和可行性.