为探寻一种快速可靠的分析方法用于橄榄油中掺杂煎炸老油含量的测定,实验采用可见和近红外透射光谱分析技术结合区间偏最小二乘法(interval partial least squares,iPLS)、联合区间偏最小二乘法(synergy interval partial least squa...为探寻一种快速可靠的分析方法用于橄榄油中掺杂煎炸老油含量的测定,实验采用可见和近红外透射光谱分析技术结合区间偏最小二乘法(interval partial least squares,iPLS)、联合区间偏最小二乘法(synergy interval partial least squares,SiPLS)和反向区间偏最小二乘法(backward interval partial least squares,BiPLS),对掺杂不同含量煎炸老油的橄榄油建模分析,并对不同模型比较优选。采集样品400~2500 nm范围内的光谱,对光谱数据进行Savitzky-Golay(SG)平滑去噪。剔除奇异样本后,采用sample set partitioning based on joint X-Y distance(SPXY)法划分样本集,以不同的iPLS优选建模区域,建立煎炸老油含量预测模型。结果表明:对掺杂不同含量煎炸大豆油的橄榄油,采用划分20个区间,选择2个子区间[4,16]建立的SiPLS模型预测效果最好,相关系数(Rp)达0.998 9,预测均方根误差(RMSEP)为0.019 2。对掺杂不同含量煎炸花生油的橄榄油,采用划分20个区间,选择2个子区间[2,16]组合建立的SiPLS和BiPLS模型具有相同的预测效果,预测均方根误差(RMSEF)为0.0120,均优于iPLS模型。此外,与SiPLS模型相比,BiPLS模型运算量少,速度快。由此可见,基于掺杂油样品的可见和近红外透射光谱,分别采用组合区间偏最小二乘法(SiPLS)和反向区间偏最小二乘法(BiPLS)优选建模光谱区域,可以对橄榄油中掺杂煎炸大豆油和煎炸花生油含量进行准确测定。而且,实验过程无需对掺杂油样品进行预处理,无环境污染,操作简单,快速无损。展开更多
为简化鹅肉弹性的可见-近红外光谱模型和提高预测精度,采用联合区间偏最小二乘法(synergyinterval partial least square algorithm,siPLS)结合遗传算法(Genetic algorithm,GA)提取可见-近红外光谱特征波长,用最小二乘支持向量回归(leas...为简化鹅肉弹性的可见-近红外光谱模型和提高预测精度,采用联合区间偏最小二乘法(synergyinterval partial least square algorithm,siPLS)结合遗传算法(Genetic algorithm,GA)提取可见-近红外光谱特征波长,用最小二乘支持向量回归(least square support vector for regression,LSSVR)建立鹅肉弹性的预测模型。试验以万能试验机获取恢复距离S作为鹅肉弹性实际值。在模型建立过程中,先利用sym8小波的2层分解对原始的可见-近红外光谱进行光谱预处理;然后用siPLS优选出4个特征光谱子区间(分别为第3、5、9、13子区间),在这4个特征光谱子区间内继续用GA优选出74个特征波长,并建立基于LSSVR的鹅肉弹性的预测模型。模型预测集的决定系数(R2)和预测均方根误差(root mean squarederror of prediction,RMSEP)分别为0.9096和0.0588。试验结果表明,siPLS结合GA法能够有效提取光谱中的鹅肉弹性对应的特征波长,有利于提高LSSVR模型预测鹅肉弹性的精度。展开更多
文摘为探寻一种快速可靠的分析方法用于橄榄油中掺杂煎炸老油含量的测定,实验采用可见和近红外透射光谱分析技术结合区间偏最小二乘法(interval partial least squares,iPLS)、联合区间偏最小二乘法(synergy interval partial least squares,SiPLS)和反向区间偏最小二乘法(backward interval partial least squares,BiPLS),对掺杂不同含量煎炸老油的橄榄油建模分析,并对不同模型比较优选。采集样品400~2500 nm范围内的光谱,对光谱数据进行Savitzky-Golay(SG)平滑去噪。剔除奇异样本后,采用sample set partitioning based on joint X-Y distance(SPXY)法划分样本集,以不同的iPLS优选建模区域,建立煎炸老油含量预测模型。结果表明:对掺杂不同含量煎炸大豆油的橄榄油,采用划分20个区间,选择2个子区间[4,16]建立的SiPLS模型预测效果最好,相关系数(Rp)达0.998 9,预测均方根误差(RMSEP)为0.019 2。对掺杂不同含量煎炸花生油的橄榄油,采用划分20个区间,选择2个子区间[2,16]组合建立的SiPLS和BiPLS模型具有相同的预测效果,预测均方根误差(RMSEF)为0.0120,均优于iPLS模型。此外,与SiPLS模型相比,BiPLS模型运算量少,速度快。由此可见,基于掺杂油样品的可见和近红外透射光谱,分别采用组合区间偏最小二乘法(SiPLS)和反向区间偏最小二乘法(BiPLS)优选建模光谱区域,可以对橄榄油中掺杂煎炸大豆油和煎炸花生油含量进行准确测定。而且,实验过程无需对掺杂油样品进行预处理,无环境污染,操作简单,快速无损。
文摘为简化鹅肉弹性的可见-近红外光谱模型和提高预测精度,采用联合区间偏最小二乘法(synergyinterval partial least square algorithm,siPLS)结合遗传算法(Genetic algorithm,GA)提取可见-近红外光谱特征波长,用最小二乘支持向量回归(least square support vector for regression,LSSVR)建立鹅肉弹性的预测模型。试验以万能试验机获取恢复距离S作为鹅肉弹性实际值。在模型建立过程中,先利用sym8小波的2层分解对原始的可见-近红外光谱进行光谱预处理;然后用siPLS优选出4个特征光谱子区间(分别为第3、5、9、13子区间),在这4个特征光谱子区间内继续用GA优选出74个特征波长,并建立基于LSSVR的鹅肉弹性的预测模型。模型预测集的决定系数(R2)和预测均方根误差(root mean squarederror of prediction,RMSEP)分别为0.9096和0.0588。试验结果表明,siPLS结合GA法能够有效提取光谱中的鹅肉弹性对应的特征波长,有利于提高LSSVR模型预测鹅肉弹性的精度。