期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进LSSVM模型的区域铁路货运量预测 被引量:6
1
作者 陈鹏芳 孟建军 +1 位作者 李德仓 胥如迅 《铁道运输与经济》 北大核心 2022年第2期59-65,共7页
准确的区域铁路货运量预测在区域物流顶层规划、运输资源合理配置及其他物流辅助活动中起着重要的参考作用。针对LSSVM模型参数选择敏感和选择随意,且多输入条件下模型过程计算复杂的问题,提出一种融合PCA方法、WOA算法和LSSVM模型的区... 准确的区域铁路货运量预测在区域物流顶层规划、运输资源合理配置及其他物流辅助活动中起着重要的参考作用。针对LSSVM模型参数选择敏感和选择随意,且多输入条件下模型过程计算复杂的问题,提出一种融合PCA方法、WOA算法和LSSVM模型的区域铁路货运量预测新方法。采用PCA方法提取样本数据的主成分作为模型的输入,利用WOA算法全局搜索能力强、寻优效率高的优点对LSSVM模型的参数组合(λ,δ)进行寻优,得到基于改进LSSVM的区域铁路货运量预测模型。以陕西省2001—2019年与铁路货运量相关的18个指标数据作为样本,通过实际算例验证模型的预测性能。结果表明,所建模型的最大相对误差绝对值达到2.724%,相较于传统LSSVM模型和WOA-LSSVM模型降低了7.748%和3.589%,且模型的泛化能力和稳定性都得到了提升。 展开更多
关键词 区域铁路货运量 预测 LSSVM模型 PCA WOA算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部