Xin’an coal mine, Henan Province, faces the risk of water inrush because 40% of the area of the coal mine is under the surface water of the Xiaolangdi reservoir. To forecast water disaster, an effective aquifuge and ...Xin’an coal mine, Henan Province, faces the risk of water inrush because 40% of the area of the coal mine is under the surface water of the Xiaolangdi reservoir. To forecast water disaster, an effective aquifuge and a limit of water infiltration were determined by rock-phase analysis and long term observations of surface water and groundwater. By field monitoring, as well as physical and numerical simulation experiments, we obtained data reflecting different heights of a water flow fractured zone (WFFZ) under different mining conditions, derived a formula to calculate this height and built a forecasting model with the aid of GIS. On the basis of these activities, the coal mine area was classified into three sub-areas with different potential of water inrush. In the end, our research results have been applied in and verified by industrial mining experiments at three working faces and we were able to present a successful example of coal mining under a large reservoir.展开更多
In order to monitor dangerous areas in coal mines automatically,we propose to detect helmets from underground coal mine videos for detecting miners.This method can overcome the impact of similarity between the targets...In order to monitor dangerous areas in coal mines automatically,we propose to detect helmets from underground coal mine videos for detecting miners.This method can overcome the impact of similarity between the targets and their background.We constructed standard images of helmets,extracted four directional features,modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes.Out experimental results show that this method can detect helmets effectively.The detection rate was 83.7%.展开更多
基金Project 2007CB209400 supported by the National Basic Research Program of China
文摘Xin’an coal mine, Henan Province, faces the risk of water inrush because 40% of the area of the coal mine is under the surface water of the Xiaolangdi reservoir. To forecast water disaster, an effective aquifuge and a limit of water infiltration were determined by rock-phase analysis and long term observations of surface water and groundwater. By field monitoring, as well as physical and numerical simulation experiments, we obtained data reflecting different heights of a water flow fractured zone (WFFZ) under different mining conditions, derived a formula to calculate this height and built a forecasting model with the aid of GIS. On the basis of these activities, the coal mine area was classified into three sub-areas with different potential of water inrush. In the end, our research results have been applied in and verified by industrial mining experiments at three working faces and we were able to present a successful example of coal mining under a large reservoir.
基金provided by the National High Technology Research and Development Program of China (No.2008AA062202)
文摘In order to monitor dangerous areas in coal mines automatically,we propose to detect helmets from underground coal mine videos for detecting miners.This method can overcome the impact of similarity between the targets and their background.We constructed standard images of helmets,extracted four directional features,modeled the distribution of these features using a Gaussian function and separated local images of frames into helmet and non-helmet classes.Out experimental results show that this method can detect helmets effectively.The detection rate was 83.7%.