期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
空域加权局部对比度的红外小目标检测算法 被引量:10
1
作者 段思韦 王忠华 叶铮 《激光与红外》 CAS CSCD 北大核心 2020年第10期1200-1206,共7页
针对传统局部对比度算法在强杂波背景下,容易引入虚警目标的不足,提出了一种空域加权局部对比度的红外小目标检测算法。首先,利用具有中心激励和侧向抑制性的二维高斯差分滤波器,抑制了原始图像大部分的背景杂波,以提高图像的信噪比;然... 针对传统局部对比度算法在强杂波背景下,容易引入虚警目标的不足,提出了一种空域加权局部对比度的红外小目标检测算法。首先,利用具有中心激励和侧向抑制性的二维高斯差分滤波器,抑制了原始图像大部分的背景杂波,以提高图像的信噪比;然后,利用目标均值与邻域的中值的比值进行局部对比度测量,再用目标各区域的灰度均值差加权局部对比度,生成目标显著图;最后,对显著图进行自适应阈值分割,检测出真实目标。实验结果表明,与其他几种检测方法对比,该算法不仅具有较高的信躁比增益和背景抑制因子,还具有较高的检测率和较低的虚警率,是一种有效的红外小目标检测方法。 展开更多
关键词 小目标检测 区域灰度均值 局部对比度 显著图
在线阅读 下载PDF
基于改进蚁群算法的图像边缘检测研究 被引量:26
2
作者 汪凯 张贵仓 《计算机工程与应用》 CSCD 北大核心 2017年第23期171-176,共6页
传统的蚁群算法应用于图像边缘检测时,会出现边缘不够平滑、受噪声影响大、易收敛于局部等问题。为了提高边缘检测的效果,将灰度梯度与区域灰度均值方法相结合,确定蚂蚁的初始位置和启发矩阵;引入权重因子定义新的概率转移函数,并通过... 传统的蚁群算法应用于图像边缘检测时,会出现边缘不够平滑、受噪声影响大、易收敛于局部等问题。为了提高边缘检测的效果,将灰度梯度与区域灰度均值方法相结合,确定蚂蚁的初始位置和启发矩阵;引入权重因子定义新的概率转移函数,并通过混沌算法和自适应参数进行信息素矩阵的更新,避免过早陷入局部最优。实验结果表明,改进的蚁群算法可以有效减少噪声对边缘检测的影响,并获得更加完整和清晰的图像边缘,取得较好的效果。 展开更多
关键词 蚁群算法 边缘检测 权重 梯度 区域灰度均值 自适应
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部