期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于改进区域提议网络和特征聚合小样本目标检测方法
1
作者 付可意 王高才 邬满 《计算机应用》 CSCD 北大核心 2024年第12期3790-3797,共8页
在现有的小样本目标检测中,区域提议网络(RPN)通常是在基类数据上训练以生成新类候选框;然而新类数据相较于基类更稀缺,在引入时可能产生与目标物不同的复杂背景,导致RPN将背景误认为前景,遗漏高交并比(IoU)值候选框。针对上述问题,提... 在现有的小样本目标检测中,区域提议网络(RPN)通常是在基类数据上训练以生成新类候选框;然而新类数据相较于基类更稀缺,在引入时可能产生与目标物不同的复杂背景,导致RPN将背景误认为前景,遗漏高交并比(IoU)值候选框。针对上述问题,提出一种基于改进RPN和特征聚合小样本目标检测方法(IFA-FSOD)。首先,基于RPN进行改进,即通过在RPN中设计一个基于度量的非线性分类器,计算骨干网络提取的特征和新类特征之间的相似度,以提高对新类候选框的召回率,从而筛选高IoU候选框;其次,在感兴趣区域对齐(RoI Align)中引入基于注意力机制的特征聚合模块(FAM),并通过设计不同尺度的网格,获取更全面的信息和特征表示,从而缓解因尺度不同引起的特征信息缺失。实验结果表明,相较于QA-FewDet(Query Adaptive Few-shot object Detection)方法,IFA-FSOD方法在PASCAL VOC数据集的新类上的Novel Set 3中的10-shot下的新类别平均精度(50%IoU)(nAP50)提升了4.5个百分点;相较于FsDetView(Few-shot object Detection and Viewpoint estimation)方法,在10-shot和30-shot设置下,IFA-FSOD方法在COCO数据集的新类上的平均精度均值(mAP)分别提升了0.2和0.8个百分点。可见改进RPN和特征聚合(IFA)能有效提高在小样本情况下对目标类别的检测性能,并解决高IoU值候选框遗漏和特征信息捕捉不全的问题。 展开更多
关键词 小样本目标检测 基于度量 区域提议网络 非线性分类器 特征聚合
在线阅读 下载PDF
旋转区域提议网络的孪生神经网络跟踪算法 被引量:3
2
作者 姜文涛 崔江磊 《计算机工程与应用》 CSCD 北大核心 2022年第24期247-255,共9页
孪生区域提议网络跟踪算法是一种高效的目标跟踪算法,通过锚框规避了图像金字塔对跟踪性能带来的影响,但这种跟踪方法受制于区域提议网络本身的局限性,在目标旋转时,跟踪精度将受到较大损失。而其他对旋转鲁棒性较高的方法则因为使用了... 孪生区域提议网络跟踪算法是一种高效的目标跟踪算法,通过锚框规避了图像金字塔对跟踪性能带来的影响,但这种跟踪方法受制于区域提议网络本身的局限性,在目标旋转时,跟踪精度将受到较大损失。而其他对旋转鲁棒性较高的方法则因为使用了复杂的旋转结构,导致算法的跟踪速度大幅下降。为了解决旋转目标对区域提议网络跟踪精度的影响,提出了旋转区域提议网络的孪生神经网络跟踪算法,通过AO-RPN(arbitrary-oriented region proposal network)结构将旋转与区域提议网络相统一,引入角度预测分支,在目标跟踪的过程中,直接对旋转的目标进行搜索,并得到最小外接矩形。该方法在保持较高跟踪速度的同时,精度超过了对目标进行旋转采样或使用局部特征进行跟踪的算法。通过在数据集OTB2015、VOT2016和VOT2018上进行的大量实验。结果表明,该算法在遮挡、形变、光照等多种复杂情况下表现出了较强的鲁棒性和适应性。 展开更多
关键词 目标跟踪 特征融合 旋转锚框 区域提议网络 孪生神经网络
在线阅读 下载PDF
基于改进Faster-RCNN的起重机钢丝绳表面缺陷识别方法
3
作者 苏立鹏 娄益凡 +3 位作者 杨吴奔 高建貌 王雪迎 易灿灿 《机电工程》 北大核心 2025年第7期1341-1349,共9页
针对现有的起重机钢丝绳表面缺陷检测中存在的检测效率低、准确度差、鲁棒性有限等问题,提出了一种基于改进快速区域卷积神经网络(Faster-RCNN)的起重机钢丝绳表面缺陷识别检测方法,该方法结合多个关键技术,显著提升了钢丝绳表面缺陷识... 针对现有的起重机钢丝绳表面缺陷检测中存在的检测效率低、准确度差、鲁棒性有限等问题,提出了一种基于改进快速区域卷积神经网络(Faster-RCNN)的起重机钢丝绳表面缺陷识别检测方法,该方法结合多个关键技术,显著提升了钢丝绳表面缺陷识别的性能。首先,采用了多尺度策略提高输入图像的分辨率,从而更好地检测不同大小的缺陷;其次,在网络中引入了可变形卷积,以增强其捕捉传统卷积技术难以检测的钢丝绳缺陷复杂形状特征的能力;采用了路径增强技术融合低维和高维特征,有效解决了在下采样和特征融合过程中信息丢失的问题,极大提升了模型在各层之间保持关键信息的能力;最后,采用了广义交并比(GIOU)损失函数替代传统的交并比(IOU)损失函数,显著提高了边界框预测的准确性,验证了改进后的Faster-RCNN算法在起重机钢丝绳损伤检测的性能提升方面较为显著。研究结果表明:改进版Faster-RCNN模型相比原算法在精度上有了显著提高,准确率从81.8%提升至90.2%,召回率从83.8%提高至94.2%,最终平均精度达到0.934,提升了9.6%。与传统检测算法如SSD和原版YOLOv5相比,该方法的准确率分别提高了17.6%和11.0%,证明了其在钢丝绳损伤图像识别中的有效性。 展开更多
关键词 起重机械 损伤检测 改进的快速区域卷积神经网络 多尺度和自定义锚框策略 广义交并比损失函数 可变形卷积 路径增强特征金字塔 区域提议网络 消融实验
在线阅读 下载PDF
多层特征融合和并行自注意力的孪生网络目标跟踪算法 被引量:2
4
作者 束平 许克应 鲍华 《计算机应用研究》 CSCD 北大核心 2022年第4期1237-1241,1246,共6页
目标跟踪是计算机视觉方向上的一项重要课题,其中尺度变化、形变和旋转是目前跟踪领域较难解决的问题。针对以上跟踪中所面临的具有挑战性的问题,基于已有的孪生网络算法提出多层特征融合和并行自注意力的孪生网络目标跟踪算法(MPSiamR... 目标跟踪是计算机视觉方向上的一项重要课题,其中尺度变化、形变和旋转是目前跟踪领域较难解决的问题。针对以上跟踪中所面临的具有挑战性的问题,基于已有的孪生网络算法提出多层特征融合和并行自注意力的孪生网络目标跟踪算法(MPSiamRPN)。首先,用修改后的ResNet50对模板图片和搜索图片进行特征提取,为处理网络过深而导致目标部分特征丢失,提出多层特征融合模块(multi-layer feature fusion module,MLFF)将ResNet后三层特征进行融合;其次,引入并行自注意力模块(parallel self-attention module,PSA),该模块由通道自注意力和空间自注意力组成,通道自注意力可以选择性地强调对跟踪有益的通道特征,空间自注意力能学习目标丰富的空间信息;最后,采用区域提议网络(regional proposal network,RPN)来完成分类和回归操作,从而确定目标的位置和形状。实验显示,提出的MPSiamRPN在OTB100、VOT2018两个测试数据集上取得了具有可竞争性的结果。 展开更多
关键词 目标跟踪 多层特征融合 空间自注意力 通道自注意力 区域提议网络 孪生网络
在线阅读 下载PDF
基于RCNN的车辆检测方法研究 被引量:16
5
作者 朱茂桃 张鸿翔 方瑞华 《机电工程》 CAS 北大核心 2018年第8期880-885,共6页
为了解决基于传统机器学习车辆检测算法实时性和泛化能力差的问题,对基于深度学习的车辆检测算法进行研究。分析了Faster R-CNN检测算法原理,使用Python编程语言基于深度学习框架Tensor Flow实现了Faster R-CNN算法;采集了4个季节不同... 为了解决基于传统机器学习车辆检测算法实时性和泛化能力差的问题,对基于深度学习的车辆检测算法进行研究。分析了Faster R-CNN检测算法原理,使用Python编程语言基于深度学习框架Tensor Flow实现了Faster R-CNN算法;采集了4个季节不同天气情况下的12 000张路况图片数据,并对数据集进行了标注,采用3种不同方式对数据集进行了预处理;通过对照试验对Faster RCNN算法中的超参数进行了调优;使用控制变量法比较了RCNN、SPPnet、Fast R-CNN和Faster R-CNN 4种算法的检测准确率和检测速度,指出了4种算法的主要耗时步骤,验证了Faster R-CNN车辆检测算法的有效性。研究结果表明:基于Faster R-CNN的车辆检测算法达到每张69 ms的检测速度和91.3%的准确率,能够实现实时高精度的车辆检测。 展开更多
关键词 汽车工程 辅助驾驶 车辆检测 深度学习 区域提议网络 卷积神经网络
在线阅读 下载PDF
基于改进Faster-RCNN的输电线路巡检图像检测 被引量:58
6
作者 魏业文 李梅 +1 位作者 解园琳 戴北城 《电力工程技术》 北大核心 2022年第2期171-178,共8页
针对传统输电线路目标巡检图像识别方法响应速度慢、准确率不高的问题,文中提出一种改进的更快速区域卷积神经网络(Faster-RCNN)深度学习识别算法。通过轻量化卷积神经网络(ZFnet)提取图像特征,并重置模型参数以获取更多目标细节;利用Fa... 针对传统输电线路目标巡检图像识别方法响应速度慢、准确率不高的问题,文中提出一种改进的更快速区域卷积神经网络(Faster-RCNN)深度学习识别算法。通过轻量化卷积神经网络(ZFnet)提取图像特征,并重置模型参数以获取更多目标细节;利用Faster-RCNN对目标进行检测,由子网络区域提议模型生成目标候选框和快速区域卷积神经网络(Fast-RCNN)进行参数调优,并在Faster-RCNN输出部分引入精炼阶段,增加目标特征的分类细化和回归细化,将存在目标的多个边界框合并,实现精确分类以及坐标定位。实验结果表明:改进Faster-RCNN算法可有效识别线路设备及设备缺陷,总体识别率达到93.5%,响应时间在1 s内。与图像识别法或单步多阶目标检测(SSD)、实时快速目标检测(YOLO)深度学习法相比,所提算法提高了电力设备的识别精度与响应速度,在输电线路智能巡检中具有一定的优越性。 展开更多
关键词 输电线路巡检 图像识别 深度学习 卷积神经网络 特征提取 区域提议网络
在线阅读 下载PDF
一种改进的Faster-RCNN电路板字符检测方法 被引量:9
7
作者 吉训生 李建明 《小型微型计算机系统》 CSCD 北大核心 2020年第6期1291-1295,共5页
电路板上的微小字符,由于模糊、腐蚀和分辨率低的原因,导致检测难度大.论文提出一种改进的Faster-RCNN电路板字符检测方法,首先针对数据集中字符目标的长宽比特点,优化区域提议网络,生成目标候选区域,在此基础上对感兴趣区域池化层进行... 电路板上的微小字符,由于模糊、腐蚀和分辨率低的原因,导致检测难度大.论文提出一种改进的Faster-RCNN电路板字符检测方法,首先针对数据集中字符目标的长宽比特点,优化区域提议网络,生成目标候选区域,在此基础上对感兴趣区域池化层进行改进,引入多分辨率特征融合,结合浅层网络的语义信息提取候选区域卷积特征.对实际的电路板图像数据集进行训练和测试,对比了VGG-16、Res Net-50和Res Net-101这3种特征提取网络,结果表明,基于VGG-16的Faster-RCNN在电路板字符检测场景下效果更好,同时,相较于原始Faster-RCNN,改进后的Faster-RCNN将整张图片识别率由86.82%提升至89.09%,单个字符识别精确率达到99.34%,可以更好的满足该环境下字符检测的需求. 展开更多
关键词 电路板字符 Faster-RCNN 字符检测 区域提议网络 特征融合
在线阅读 下载PDF
基于DeR-FCN模型的车辆检测算法 被引量:4
8
作者 王玲 李厚博 +1 位作者 王鹏 孙爽滋 《计算机工程与设计》 北大核心 2020年第10期2927-2933,共7页
针对复杂城市环境下天气、光照、目标尺度以及车辆之间的遮挡等因素影响带来的车辆检测精度较差问题,提出一种改进区域全卷积网络的车辆检测算法(DeR-FCN)。通过特征级联的方式,跨层连接融合车辆底层细节特征和高层语义特征;使用维度分... 针对复杂城市环境下天气、光照、目标尺度以及车辆之间的遮挡等因素影响带来的车辆检测精度较差问题,提出一种改进区域全卷积网络的车辆检测算法(DeR-FCN)。通过特征级联的方式,跨层连接融合车辆底层细节特征和高层语义特征;使用维度分解区域提议网络,获得更加精准的区域候选框;在预测阶段采用软化非极大值抑制的方法,输出更加准确的检测结果。为验证算法的有效性,在KITTI和PASCAL VOC数据集,使用DeR-FCN算法和常用的车辆检测算法进行对比实验,实验结果表明,DeR-FCN算法的检测精度高于其它方法。 展开更多
关键词 深度学习 车辆检测 区域全卷积网络 维度分解区域提议网络 软化非极大值抑制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部