期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
基于改进快速区域卷积神经网络的视频SAR运动目标检测算法研究 被引量:33
1
作者 闫贺 黄佳 +3 位作者 李睿安 王旭东 张劲东 朱岱寅 《电子与信息学报》 EI CSCD 北大核心 2021年第3期615-622,共8页
针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法。该方法结合Faster R-CNN深度学习... 针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法。该方法结合Faster R-CNN深度学习算法,利用K-means聚类方法对anchor box的长宽及长宽比进行预处理,并采用特征金字塔网络(FPN)架构对视频SAR运动目标的“亮线”特征进行检测。与传统方法相比,该方法具有实现简单、检测概率高、虚警概率低等优势。最后,通过课题组研制的Mini-SAR系统获取的实测视频SAR数据验证了新方法的有效性。 展开更多
关键词 视频SAR 运动目标检测 快速区域卷积神经网络 特征金字塔网络 K-MEANS
在线阅读 下载PDF
基于加速区域卷积神经网络的高铁接触网承力索底座裂纹检测研究 被引量:8
2
作者 刘凯 刘志刚 陈隽文 《铁道学报》 EI CAS CSCD 北大核心 2019年第7期43-49,共7页
针对高速铁路接触网支撑结构中承力索底座裂纹的问题,提出一种利用加速区域卷积神经网络与Beamlet变换相结合的图像检测方法。该方法使用加速区域卷积神经网络实现对承力索底座在待检测图像中的识别定位,然后根据定位的承力索底座图像特... 针对高速铁路接触网支撑结构中承力索底座裂纹的问题,提出一种利用加速区域卷积神经网络与Beamlet变换相结合的图像检测方法。该方法使用加速区域卷积神经网络实现对承力索底座在待检测图像中的识别定位,然后根据定位的承力索底座图像特点,通过Radon变换等预处理操作对承力索底座疑似裂纹区域精确定位,最后使用基于Beamlet变换的局部链搜索算法快速得到裂纹信息,实现承力索底座裂纹故障的可靠诊断。实验表明:该方法能在复杂的接触网支撑与悬挂装置图像中准确定位识别承力索底座裂纹故障,对拍摄距离、拍摄角度以及曝光度等因素具有很好的适应性,且具有较高的检测效率。 展开更多
关键词 高铁接触网 承力索底座 加速区域卷积神经网络 BEAMLET变换
在线阅读 下载PDF
基于更快区域卷积神经网络的多视角船舶识别 被引量:4
3
作者 程静 王荣杰 +2 位作者 曾光淼 林安辉 王亦春 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2023年第10期1832-1840,共9页
针对在复杂海洋环境下采集船舶多视角图像难度大、不同视角下船舶外观差异显著的问题,本文以自制的不同类型的多艘船舶的多视角图像为数据集训练更快区域卷积神经网络模型,利用平均F1分数、平均精度和平均误检率作为评价指标评估更快区... 针对在复杂海洋环境下采集船舶多视角图像难度大、不同视角下船舶外观差异显著的问题,本文以自制的不同类型的多艘船舶的多视角图像为数据集训练更快区域卷积神经网络模型,利用平均F1分数、平均精度和平均误检率作为评价指标评估更快区域卷积神经网络模型对不同视角船舶的识别性能,并通过识别不同船舶的F1分数和误检率分析更快区域卷积神经网络对不同质量、背景图像的识别能力。实验结果表明,更快区域卷积神经网络识别多角度船舶的平均F1分数为0.6969,平均精度为92.88%,平均误检率为8.34%,即更快区域卷积神经网络对多视角船舶有较高的识别能力,但对于有雾或昏暗环境下的低像素图像识别能力明显下降。 展开更多
关键词 多视角 船舶识别 视觉图像 更快区域卷积神经网络 目标检测 特征提取 深度学习 低分辨率图像
在线阅读 下载PDF
基于区域卷积神经网络Faster R-CNN的手势识别方法 被引量:12
4
作者 张勋 陈亮 +1 位作者 朱雪婷 胡诚 《东华大学学报(自然科学版)》 CAS 北大核心 2019年第4期559-563,共5页
为提升手势识别算法的准确率,引入深度学习中区域卷积神经网络Faster R-CNN (faster region-convolution neural network)。利用该网络的卷积神经网络自动提取手势目标特征,采用RPN(region proposal networks)机制提取候选框以提高搜索... 为提升手势识别算法的准确率,引入深度学习中区域卷积神经网络Faster R-CNN (faster region-convolution neural network)。利用该网络的卷积神经网络自动提取手势目标特征,采用RPN(region proposal networks)机制提取候选框以提高搜索效率,采用Faster R-CNN网络对建议框做目标检测和分类以实现手势端到端的识别。结果表明,该方法能够更加准确高效地完成手势特征提取和分类任务,有效提高手势识别准确率。 展开更多
关键词 区域卷积神经网络 FASTER R-CNN 手势识别 深度学习
在线阅读 下载PDF
基于历史信息的区域卷积神经网络行人检测 被引量:1
5
作者 陆宝红 宋雪桦 《激光技术》 CAS CSCD 北大核心 2019年第5期660-665,共6页
为了解决卷积神经网络在进行连续行人检测时,检测行人速度较慢,达不到实时性要求的问题,采用基于历史信息的区域卷积神经网络行人检测算法,利用前一幅图像中的检测结果对当前图像的检测过程进行优化,将前一帧的检测结果作为对当前帧提... 为了解决卷积神经网络在进行连续行人检测时,检测行人速度较慢,达不到实时性要求的问题,采用基于历史信息的区域卷积神经网络行人检测算法,利用前一幅图像中的检测结果对当前图像的检测过程进行优化,将前一帧的检测结果作为对当前帧提取推荐区域的参考信息,并使用当前帧与前一帧的灰度值差异图对当前图像的卷积特征进行过滤,以缩小滑动窗口检测时的搜索区域。在加州理工学院行人检测数据集上进行了检测实验。结果表明,结合历史信息的算法与先进的算法相比检测速度提升了2.5倍,同时检测准确率提升了1.5%。该算法实现了实时行人检测,设计的网络能有效检测小目标行人。 展开更多
关键词 图像处理 连续行人检测 历史信息 区域卷积神经网络 区域推荐
在线阅读 下载PDF
基于改进掩码-区域卷积神经网络的混凝土病害实例分割 被引量:5
6
作者 黄彩萍 谢鑫 +1 位作者 周永康 李桂龙 《桥梁建设》 EI CSCD 北大核心 2023年第6期63-70,共8页
为对混凝土病害图像进行更精确的实例分割,提出改进掩码-区域卷积神经网络(Mask Region Convolution Neural Network,Mask-RCNN)。该网络采用轻量级的可移动网络(MobileNetV2)代替原始Mask-RCNN中卷积层过大的主干网络——残差网络(ResN... 为对混凝土病害图像进行更精确的实例分割,提出改进掩码-区域卷积神经网络(Mask Region Convolution Neural Network,Mask-RCNN)。该网络采用轻量级的可移动网络(MobileNetV2)代替原始Mask-RCNN中卷积层过大的主干网络——残差网络(ResNet101),加入路径聚合网络(PANet),以提高Mask-RCNN提取浅层特征信息的能力。为验证改进Mask-RCNN的识别精度及其在实际工程中的可行性,首先构建多类混凝土病害图像数据集,利用K-means聚类算法确定最适合该数据集的先验边界框的长宽比,然后对比改进Mask-RCNN与原始Mask-RCNN、其它主流深度学习网络对混凝土五类病害(裂缝、露筋、剥落、白皙和空洞)的识别结果;最后利用无人机采集到的钢筋混凝土桥梁病害图像作为测试集进行测试。结果表明:改进Mask-RCNN在提高计算速度的同时能更准确地定位病害,减少了误检和漏检,识别精度高于原始Mask-RCNN及其它深度学习网络;改进Mask-RCNN可以识别无人机拍摄的未经训练的新的混凝土病害图像,识别精度满足实际工程需求。 展开更多
关键词 桥梁工程 混凝土病害 深度学习 掩码-区域卷积神经网络 可移动网络 K-MEANS聚类算法 病害识别
在线阅读 下载PDF
基于生成对抗网络改进的更快速区域卷积神经网络交通标志检测 被引量:4
7
作者 高忠文 于立国 《汽车技术》 CSCD 北大核心 2020年第7期14-18,共5页
针对小尺寸、远距离的交通标志检测过程中缺少信息的问题,以改进的更快速区域卷积神经网络(Faster R-CNN)检测器为基础,结合生成对抗网络(GAN)的目标检测算法实现对小目标交通标志的检测。Faster R-CNN首先根据期望目标设定合适的锚点数... 针对小尺寸、远距离的交通标志检测过程中缺少信息的问题,以改进的更快速区域卷积神经网络(Faster R-CNN)检测器为基础,结合生成对抗网络(GAN)的目标检测算法实现对小目标交通标志的检测。Faster R-CNN首先根据期望目标设定合适的锚点数量,生成包含小目标的候选区域,再使用生成网络对候选区域中的模糊小目标进行上采样,生成高分辨率图像,最后使用分类损失函数与回归损失函数对判别网络进行改进。试验结果表明,Faster R-CNN和生成对抗网络相结合的检测算法可以提高远距离小目标交通标志检测性能。 展开更多
关键词 交通标志检测 更快速区域卷积神经网络 生成对抗网络 超分辨重建
在线阅读 下载PDF
应用掩码区域卷积神经网络的文本检测模型
8
作者 赵小薇 季明辉 +1 位作者 徐秀娟 沈家乐 《应用科学学报》 CAS CSCD 北大核心 2023年第3期527-540,共14页
要:提出一种基于掩码区域卷积神经网络的文本检测模型。首先从扩大模型感受野并尽可能保持模型效率的角度出发,针对残差神经网络中的瓶颈结构进行优化,构建基于结构优化的残差神经网络(residual network based on structural optimizati... 要:提出一种基于掩码区域卷积神经网络的文本检测模型。首先从扩大模型感受野并尽可能保持模型效率的角度出发,针对残差神经网络中的瓶颈结构进行优化,构建基于结构优化的残差神经网络(residual network based on structural optimization,ResNetSO);然后去除冗余特征以提高融合后特征质量,并将空间注意力机制应用于特征金字塔网络,构建了基于下层特征指导的特征金字塔网络(feature pyramid network based on lower feature guidance,FPNetLFG)。在两个公开数据集上的实验结果表明:包含ResNetSO和FPNetLFG两个模块的模型应用在级联区域卷积神经网络、递归特征金字塔和可切换空洞卷积的目标检测模型中,分别可以带来0.8%和0.3%左右的F1值提升,从而说明了该方法的有效性和普遍适用性。 展开更多
关键词 文本检测 掩码区域卷积神经网络 主干网络 结构优化 特征金字塔网络
在线阅读 下载PDF
基于卷积神经网络的半身裙款式特征分类识别 被引量:9
9
作者 邓莹洁 罗戎蕾 《现代纺织技术》 北大核心 2021年第6期98-105,共8页
针对服装特征分类识别不够全面、较多分类特征导致效果较差的问题,提出一种带有Inception v2模组的快速区域卷积神经网络模型的女装半身裙多特征分类识别方法。建立一个包含8类款式、11种颜色、5种图案、4种长度,共计28种类别标签的女... 针对服装特征分类识别不够全面、较多分类特征导致效果较差的问题,提出一种带有Inception v2模组的快速区域卷积神经网络模型的女装半身裙多特征分类识别方法。建立一个包含8类款式、11种颜色、5种图案、4种长度,共计28种类别标签的女装半身裙样本库;以快速区域卷积神经网络(Faster r-cnn)结构为基础,引入一个Inception v2模组,对半身裙的款式及多种特征进行学习训练,通过全连接层将来自Faster r-cnn主干网络和Inception v2的分类信息进行特征融合并共享损失,以提高算法的准确率;将目标检测框与分类结果一起输出,在对半身裙图像精准定位的基础上实现了半身裙款式及常见特征的分类识别。结果表明:该方法的平均分类准确率为92.8%,可以有效地对女装半身裙款式、特征进行分类识别,并且可用于实际场景的服装图片中。 展开更多
关键词 卷积神经网络 Inception v2模组 快速区域卷积神经网络 女装半身裙
在线阅读 下载PDF
基于深度卷积神经网络的遥感影像目标检测 被引量:4
10
作者 孙梓超 谭喜成 +4 位作者 洪泽华 董华萍 沙宗尧 周松涛 杨宗亮 《上海航天》 CSCD 2018年第5期18-24,共7页
随着遥感影像数据规模的快速扩张,如何高效准确地识别遥感影像中的典型目标成为当前的研究热点。为解决传统遥感影像目标检测方法准确率低的问题,用基于深度卷积神经网络进行遥感影像目标检测,在遥感影像数据集上用基于Faster-RCNN的神... 随着遥感影像数据规模的快速扩张,如何高效准确地识别遥感影像中的典型目标成为当前的研究热点。为解决传统遥感影像目标检测方法准确率低的问题,用基于深度卷积神经网络进行遥感影像目标检测,在遥感影像数据集上用基于Faster-RCNN的神经网络模型对VGG16卷积网络进行训练,对输入的遥感影像通过区域推荐网络标注出待检目标的包围框和置信度,实现对遥感影像的目标检测。以飞机和油罐为例,在TensorFlow深度学习框架下实现了数据预处理、网络训练、目标检测等功能,并在当前测试数据集上取得了较高的检测准确率和置信度。该研究成果可应用于遥感影像解译和处理等相关领域。 展开更多
关键词 深度卷积神经网络 遥感影像目标检测 区域卷积神经网络 深度学习 TensorFlow框架
在线阅读 下载PDF
基于卷积神经网络的航天复合材料缺陷智能检测 被引量:2
11
作者 董学金 邵红亮 +1 位作者 李志学 罗钧 《上海航天(中英文)》 CSCD 2022年第4期154-160,共7页
针对传统的缺陷图像识别处理方式存在着准确度与辨识度不足,且处理缺陷种类单一的问题,提出了一种基于Cascade R-CNN和Mask R-CNN的神经网络模型。首先,为了提高缺陷检测的可视化效果和检测准确度,在实例分割卷积网络Mask R-CNN的基础上... 针对传统的缺陷图像识别处理方式存在着准确度与辨识度不足,且处理缺陷种类单一的问题,提出了一种基于Cascade R-CNN和Mask R-CNN的神经网络模型。首先,为了提高缺陷检测的可视化效果和检测准确度,在实例分割卷积网络Mask R-CNN的基础上,结合级联神经网络Cascade R-CNN结构,组合成了新的级联实例分割Cascade Mask R-CNN网络;其次,对组合而成的级联卷积神经网络进行了训练,将训练好的模型对复合材料缺陷图像进行了检测。实验结果表明:检测的平均准确度达到了91.5%,平均置信度达到了97.3%,达到了检测精度的要求。该研究成果可运用于航天复合材料缺陷识别。 展开更多
关键词 深度学习 级联区域卷积神经网络 复合材料 缺陷检测 实例分割
在线阅读 下载PDF
联合生成对抗网络和检测网络的SAR图像目标检测
12
作者 韩子硕 王春平 +1 位作者 付强 赵斌 《国防科技大学学报》 EI CAS CSCD 北大核心 2022年第3期164-175,共12页
针对合成孔径雷达图像目标检测中存在的样本获取困难且数量有限问题,提出了联合生成对抗网络和检测网络的学习模型。利用原始训练集对特别设计的超快区域卷积神经网络进行预训练;通过基于注意力机制的深度学习生成对抗网络生成高质量合... 针对合成孔径雷达图像目标检测中存在的样本获取困难且数量有限问题,提出了联合生成对抗网络和检测网络的学习模型。利用原始训练集对特别设计的超快区域卷积神经网络进行预训练;通过基于注意力机制的深度学习生成对抗网络生成高质量合成样本,并输入检测网络进行预测;依据预测信息和概率等价类属标签分配策略为新生样本提供注释信息,并以一定占比对原始训练集进行扩充;利用扩充数据集对检测网络进行再训练。多组仿真实验证明,所提框架能够有效提升网络检测效率和性能。 展开更多
关键词 生成对抗网络 快速区域卷积神经网络 合成孔径雷达 目标检测
在线阅读 下载PDF
基于改进Faster R-CNN的高铁扣件弹条缺陷检测
13
作者 梁楠 张伟 +1 位作者 刘洋龙 荆海林 《太赫兹科学与电子信息学报》 2024年第11期1221-1227,1269,共8页
针对复杂光照环境导致的高铁扣件弹条缺陷检测困难问题,提出一种基于改进Faster R-CNN的弹条缺陷检测方法。通过多层卷积神经网络提取缺陷特征图,提高网络对缺陷特征的关注程度,降低对复杂光照环境干扰的影响;设计区域候选网络生成候选... 针对复杂光照环境导致的高铁扣件弹条缺陷检测困难问题,提出一种基于改进Faster R-CNN的弹条缺陷检测方法。通过多层卷积神经网络提取缺陷特征图,提高网络对缺陷特征的关注程度,降低对复杂光照环境干扰的影响;设计区域候选网络生成候选区域,并根据候选区域进行池化,在特征图中提取相对应的具体缺陷位置;利用区域候选网络的全连接网络层计算获得缺陷的具体类别与精确位置,得到最终的检测结果。所提算法可充分抑制光照环境干扰影响,显著增强缺陷特征的表征能力;简化了图像预处理环节,降低了对原始图像成像质量的要求。实验结果表明,所提算法能够实现对高铁扣件弹条缺陷的有效检测。与现有算法相比,具有较高的精确度和较强的鲁棒性,运算效率也得到显著提升。 展开更多
关键词 缺陷检测 扣件弹条 区域卷积神经网络 区域候选网络 图像噪声
在线阅读 下载PDF
改进Faster RCNN with FPN的素布瑕疵检测的算法研究 被引量:3
14
作者 马政 生鸿飞 《纺织工程学报》 2024年第2期84-96,共13页
纺织行业中的布匹检测仍存在采用人工检测的情况,人工检测效果受工人主观影响较大,易发生检测效率的降低和瑕疵的漏检误检。针对这种现状,探究素布瑕疵检测的算法,改进Faster RCNNwith FPN目标检测算法。首先,为了提升Faster RCNNwithFP... 纺织行业中的布匹检测仍存在采用人工检测的情况,人工检测效果受工人主观影响较大,易发生检测效率的降低和瑕疵的漏检误检。针对这种现状,探究素布瑕疵检测的算法,改进Faster RCNNwith FPN目标检测算法。首先,为了提升Faster RCNNwithFPN对于多尺度特征的融合能力,丰富各个特征层的上下文信息,引入跨尺度特征融合模块来改进特征金字塔网络结构。其次,为了更好的利用深层特征,加入尺度内特征交互模块来处理ResNet50输出的深层特征层,丰富高级特征层的语义信息。然后,为了增强对于极端尺寸瑕疵目标的检测能力,使用K-means++聚类和遗传算法,改进预设锚框。最后,由于素布瑕疵的尺寸较小,为了平衡正负样本,采用Focal Loss,增加对于素布瑕疵的检测效果。经过实验,使用COCO指标进行评价,该改进后的网络模型与Faster RCNNwithFPN相比,在mAP_(50)、mAP_(75)和mAP_(50:95)指标上分别提升6.5%、4.4%和4.0%,平均准确率有了明显提升,可以更好地完成素布瑕疵的检测任务。 展开更多
关键词 素布瑕疵检测 更快的区域卷积神经网络 改进特征金字塔网络结构 重新设计锚框 焦点损失
在线阅读 下载PDF
基于边缘分割与改进CNN的CT影像预诊断技术
15
作者 董聪慧 岳晓磊 马朋朋 《电子设计工程》 2024年第21期146-150,共5页
针对基于图像识别的智能预诊断精确度较低的问题,文中提出了一种融合边缘分割与改进CNN的CT影像预诊断算法。在Bandelet变换的基础上构建WTS-MRF模型,并采用分割递归算法对CT影像的特征区域进行处理,进而设计出基于决策输出补偿的Faster... 针对基于图像识别的智能预诊断精确度较低的问题,文中提出了一种融合边缘分割与改进CNN的CT影像预诊断算法。在Bandelet变换的基础上构建WTS-MRF模型,并采用分割递归算法对CT影像的特征区域进行处理,进而设计出基于决策输出补偿的Faster R-CNN预诊断识别算法。同时还利用了脑出血、肺结核和肾结石等典型病例影像的数据样本,通过设置对比实验验证了该算法的预诊断可靠性。相较于同类预诊断识别方法,所提算法的准确率提升了6%,CT影像的分割准确率平均值为90%,预诊断识别精确率的平均值则可达96.9%。故其性能优于同类文献对比算法,能为基于人工智能的CT影像预诊断技术发展提供一定的理论支撑。 展开更多
关键词 边缘分割 CT影像预诊断 快速区域卷积神经网络 小波域树结构的马尔可夫场模型
在线阅读 下载PDF
基于深度学习与数字孪生技术的建筑钢结构检测方法
16
作者 孙晓强 刘皓宇 +1 位作者 沙奕 张天辉 《中国建设信息化》 2024年第23期58-61,共4页
针对传统建筑钢结构缺陷检测方法效率较低的问题,研究通过特征金字塔网络和逐元素加法对快速区域卷积神经网络进行改进,并将其与数字孪生技术结合,提出了一种基于深度学习与数字孪生技术的建筑钢结构检测方法。结果显示,该方法在不同尺... 针对传统建筑钢结构缺陷检测方法效率较低的问题,研究通过特征金字塔网络和逐元素加法对快速区域卷积神经网络进行改进,并将其与数字孪生技术结合,提出了一种基于深度学习与数字孪生技术的建筑钢结构检测方法。结果显示,该方法在不同尺寸下的检测精度分别为0.78、0.81、0.82,证明了其可靠性较高。表明设计的方法能够准确地识别钢构件缺陷,研究结果可应用于建筑物结构健康监控领域,为钢结构风险预警和维护提供有力的技术支持。 展开更多
关键词 建筑钢结构 缺陷检测 快速区域卷积神经网络 数字孪生技术
在线阅读 下载PDF
基于改进Mask R-CNN的输电线路安全检测方法研究
17
作者 王铭晟 《通信电源技术》 2024年第17期219-221,共3页
随着全球电力需求的持续增长和电力网络的不断扩展,输电线路的安全性与稳定性尤为重要。输电线路在连接发电厂和用户的过程中,承担着可靠输送电能的重要职责。为提升输电线路的安全,研究提出一种基于掩膜区域卷积神经网络(Mask Region C... 随着全球电力需求的持续增长和电力网络的不断扩展,输电线路的安全性与稳定性尤为重要。输电线路在连接发电厂和用户的过程中,承担着可靠输送电能的重要职责。为提升输电线路的安全,研究提出一种基于掩膜区域卷积神经网络(Mask Region Convolutional Neural Network,Mask R-CNN)的输电线路安全检测模型,并引入特征金字塔网络(Feature Pyramid Network,FPN)对其进行改进。实验结果表明,在数据集尺寸为500时,改进Mask R-CNN模型的准确率为0.91,损失函数值为0.01。改进的Mask R-CNN模型能够有效提升输电线路缺陷检测的精度,具有较高的实用价值,能够提高电力系统的安全监控水平。 展开更多
关键词 输电线路 安全检测 掩膜区域卷积神经网络(Mask R-CNN) 特征金字塔网络(FPN)
在线阅读 下载PDF
基于Faster R-CNN算法的船舶识别检测 被引量:9
18
作者 崔巍 杨亮亮 +3 位作者 夏荣 牟向伟 樊晓伟 杨海峰 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2020年第2期182-187,223,共7页
目前,检测卫星图像中船舶的常用方法如合成孔径雷达(synthetic-aperture radar,SAR)对多目标仍难以达到精确检测,而更快速的区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)算法是一种深度学习算法,... 目前,检测卫星图像中船舶的常用方法如合成孔径雷达(synthetic-aperture radar,SAR)对多目标仍难以达到精确检测,而更快速的区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)算法是一种深度学习算法,用于物体检测和分类时,可以实现高精度实时监测。文章应用Faster R-CNN算法对卫星图像中的船舶进行识别和检测,并与传统尺度不变特征转换(scale-invariant feature transform,SIFT)算法、快速区域卷积神经网络(fast region-based convolutional neural network,Fast R-CNN)算法进行对比。研究结果表明,Faster R-CNN算法比传统SIFT算法和Fast R-CNN算法有更好的收敛速度和识别精度,该算法在船舶识别方面具有较大潜力。 展开更多
关键词 卫星图像 船舶检测 更快速的区域卷积神经网络(Faster R-CNN) 尺度不变特征转换(SIFT) 快速区域卷积神经网络(Fast R-CNN)
在线阅读 下载PDF
基于改进Fast R-CNN的红外图像行人检测研究 被引量:14
19
作者 车凯 向郑涛 +2 位作者 陈宇峰 吕坚 周云 《红外技术》 CSCD 北大核心 2018年第6期578-584,共7页
针对红外图像行人检测任务中行人细节信息少,特征提取计算量大以及易受背景影响等问题,提出了一种改进的Fast R-CNN(快速区域卷积神经网络)红外图像行人检测方法。改进主要涉及两个方面:(1)结合红外图像的特点提出了一种自适应ROI提取算... 针对红外图像行人检测任务中行人细节信息少,特征提取计算量大以及易受背景影响等问题,提出了一种改进的Fast R-CNN(快速区域卷积神经网络)红外图像行人检测方法。改进主要涉及两个方面:(1)结合红外图像的特点提出了一种自适应ROI提取算法,在不影响检测准确率的前提下,降低了ROI数量,使得网络的计算量减小;(2)提出了一种加权锚点框的定位机制,基于3种不同宽高比锚点框的检测置信度进行坐标加权,获得更准确的定位框。实验结果表明,本文提出的改进方法与传统的Haar+LBP+HOG+SVM算法及Fast R-CNN算法相比,红外图像行人检测的准确率从80.3%和91.2%提高到92.3%,检测速度从68 ms/f和25 ms/f提高到12 ms/f,提高了系统的性能。 展开更多
关键词 快速区域卷积神经网络 红外图像 行人检测 自适应ROI提取 加权锚点框
在线阅读 下载PDF
基于深度学习的肺炎图像目标检测 被引量:5
20
作者 何迪 刘立新 +3 位作者 刘玉杰 熊丰 齐美捷 张周锋 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第4期443-451,共9页
肺炎是一种严重危害身体健康的疾病,通常使用肺部X光片进行检查。肺炎诊断是肺炎治疗前非常重要的环节,但是由于肺部其他疾病的干扰、医疗数据的爆发式增长以及专业病理医生的缺乏等,导致肺炎的准确诊断较为困难。深度学习能够模仿人脑... 肺炎是一种严重危害身体健康的疾病,通常使用肺部X光片进行检查。肺炎诊断是肺炎治疗前非常重要的环节,但是由于肺部其他疾病的干扰、医疗数据的爆发式增长以及专业病理医生的缺乏等,导致肺炎的准确诊断较为困难。深度学习能够模仿人脑的机制准确高效地解释医学图像数据,在肺炎图像检测方面获得了广泛应用。构建了3种基于深度学习的图像目标检测模型,单发多框探测器(SSD)、faster-RCNN和faster-RCNN优化模型,对来自Kaggle数据集的26 684张带标签的肺部X光图像进行研究。原始X光图像经预处理后输入3种深度学习模型,分别对单处和两处病灶区域进行目标检测。随机选取500张测试图像,利用损失函数、分类准确率、回归精度和误检病灶数等指标对各模型的性能进行评估。结果表明,faster-RCNN的性能指标优于SSD;Faster-RCNN优化模型的性能指标均优于其他两种模型,其损失函数值小且可快速达到稳定,平均分类准确率为93.7%,平均回归精度为79.8%,且误检病灶数为0。该方法有助于肺炎的准确识别和诊断。 展开更多
关键词 目标检测 肺炎图像 深度学习 更快速区域卷积神经网络(faster-RCNN)模型 单发多框探测器(SSD)模型
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部