Nucleation mechanism and technological process for Ni-Fe co-deposition with a relatively high Fe^(2+)concentration surrounded were described,and the effects of Fe^(2+) concentration,solution pH,temperature,and sodium ...Nucleation mechanism and technological process for Ni-Fe co-deposition with a relatively high Fe^(2+)concentration surrounded were described,and the effects of Fe^(2+) concentration,solution pH,temperature,and sodium dodecyl sulfonate concentration were investigated.Electrochemical experiments demonstrate that iron's electrodeposition plays a leading role in the Ni-Fe co-deposition process,and the co-deposition nucleation mechanism accords with a progressive nucleation.Temperature increase does favor in increasing nickel content in the ferronickel(Ni-Fe co-deposition products),while Fe^(2+) concentration increase does not.When solution pH is higher than 3.5,nickel content in the ferronickel decreases with pH because of the hydrolysis of Fe^(2+).With the current density of 180 A/m^2,Na_2SO_4 concentration of 100 g/L and Ni^(2+) concentration of 60 g/L,a smooth ferronickel deposit containing 96.21% Ni can be obtained under the conditions of temperature of 60 °C,Fe^(2+) concentration of 0.3 g/L,solution pH of 3 and sodium dodecyl sulfonate concentration of 40 mg/L.展开更多
基金Supported by National Natural Science Foundation of China (No .60577040)Shanghai Foundation of Applied Ma-terials Research and Development ( No .0404)+1 种基金 Nano-technology Project of Shanghai ( No .0452nm051 , No .0552nm046)Shanghai Leading Academic Disciplines (No .T0101)
基金Project(51574135)supported by the National Natural Science Foundation of ChinaProject(KKPT201563022)supported by Collaborative Innovation Center of Kunming University of Science and Technology,China
文摘Nucleation mechanism and technological process for Ni-Fe co-deposition with a relatively high Fe^(2+)concentration surrounded were described,and the effects of Fe^(2+) concentration,solution pH,temperature,and sodium dodecyl sulfonate concentration were investigated.Electrochemical experiments demonstrate that iron's electrodeposition plays a leading role in the Ni-Fe co-deposition process,and the co-deposition nucleation mechanism accords with a progressive nucleation.Temperature increase does favor in increasing nickel content in the ferronickel(Ni-Fe co-deposition products),while Fe^(2+) concentration increase does not.When solution pH is higher than 3.5,nickel content in the ferronickel decreases with pH because of the hydrolysis of Fe^(2+).With the current density of 180 A/m^2,Na_2SO_4 concentration of 100 g/L and Ni^(2+) concentration of 60 g/L,a smooth ferronickel deposit containing 96.21% Ni can be obtained under the conditions of temperature of 60 °C,Fe^(2+) concentration of 0.3 g/L,solution pH of 3 and sodium dodecyl sulfonate concentration of 40 mg/L.