[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infra...[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infrastructure such as pipe networks for urban stormwater management is not enough to deal with urban rainstorm flood disasters under extreme rainfall events.The integration of green,grey and blue systems(GGB-integrated system)is gradually gaining recognition in the field of global flood prevention.It is necessary to further clarify the connotation,technical and engineering implementation strategies of the GGB-integrated system,to provide support for the resilient city construction.[Methods]Through literature retrieval and analysis,the relevant research and progress related to the layout optimization and joint scheduling optimization of the GGBintegrated system were systematically reviewed.In response to existing limitations and future engineering application requirements,key supporting technologies including the utilization of overground emergency storage spaces,safety protection of underground important infrastructure and multi-departmental collaboration,were proposed.A layout optimization framework and a joint scheduling framework for the GGB-integrated system were also developed.[Results]Current research on layout optimization predominantly focuses on the integration of green system and grey system,with relatively fewer studies incorporating blue system infrastructure into the optimization process.Moreover,these studies tend to be on a smaller scale with simpler scenarios,which do not fully capture the complexity of real-world systems.Additionally,optimization objective tend to prioritize environmental and economic goals,while social and ecological factors are less frequently considered.Current research on joint scheduling optimization is often limited to small-scale plots,with insufficient attention paid to the entire system.There is a deficiency in method for real-time,automated determination of optimal control strategies for combinations of multiple system facilities based on actual rainfall-runoff processes.Additionally,the application of emergency facilities during extreme conditions is not sufficiently addressed.Furthermore,both layout optimization and joint scheduling optimization lack consideration of the mute feed effect of flood and waterlogging in urban,watershed and regional scales.[Conclusion]Future research needs to improve the theoretical framework for layout optimization and joint scheduling optimization of GGB-integrated system.Through the comprehensive application of the Internet of things,artificial intelligence,coupling model development,multi-scale analysis,multi-scenario simulation,and the establishment of multi-departmental collaboration mechanisms,it can enhance the flood resilience of urban areas in response to rainfall events of varying intensities,particularly extreme rainfall events.展开更多
Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TM...Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.展开更多
Calcined ginger nuts admixed by fly ash and quartz sand(CGN-(F+S))has been validated to be basically compatible to earthen sites as an anchor grout.Accelerated ageing tests including water stability test,temperature a...Calcined ginger nuts admixed by fly ash and quartz sand(CGN-(F+S))has been validated to be basically compatible to earthen sites as an anchor grout.Accelerated ageing tests including water stability test,temperature and humidity cycling test,soundness test and alkali resistance test are conducted with the objective to further research the property changes of CGN-(F+S)grout.Density,surface hardness,water penetration capacity,water permeability capacity,soluble salt,scanning electron microscopy(SEM)images and energy dispersive spectrometry(EDS)spectrum of these samples have been tested after accelerated ageing tests.The results show that densities of samples decrease,surface hardness,water penetration capacity and water permeability capacity of samples increase generally.Besides,soluble salt analysis,SEM and EDS results well corroborate the changes.Based on the results it can be concluded that property changes are most serious after temperature and humidity cycling test,followed by water stability,soundness and alkali resistance test in sequence.But in general,CGN-(F+S)still has good durability.展开更多
The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite...The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite simulation method. The simulation results show that the weld seam undergoes strain hardening in the temperature range of 180-250 ℃, however, it exhibits strain softening at temperature above 250 ℃ during welding heating and cooling process. As a result, the strain hardening and strain softening effects counteract each other, introducing slightly influence on the welding residual stress, residual plastic strain and distortion. The welding longitudinal residual stress was determined by ultrasonic stress measurement method for the flat plates of A7N01-T4 aluminum alloy. The simulation results are well accordant with test ones.展开更多
A heterotrophic acidothermophilic bacterial strain,YNTC-1,was isolated from an acidic hot spring in Tengchong,Yunan,China.YNTC-1 grows at pH value of 1.5-8.0 and temperature of 40-70℃,with optimal pH and temperature ...A heterotrophic acidothermophilic bacterial strain,YNTC-1,was isolated from an acidic hot spring in Tengchong,Yunan,China.YNTC-1 grows at pH value of 1.5-8.0 and temperature of 40-70℃,with optimal pH and temperature at 3.0 and 55℃,respectively.The cells of the strain are in shape of short rod,with 1.0-1.2μm in length and 0.7-0.8μm in diameter,and with distinct spores at both poles of each cell.The predominant fatty acids in cellular membrane of the strain are C18:1ω7c.16s rRNA gene analysis reveals that this strain is closely related to Alicyclobacillus sendaiensis,with over 99%sequence similarity.Based on phenotypic and genotypic analyses,YNTC-1 is identified as a member of A.sendaiensis.Considering some important morphological and biochemical differences between strain YNTC-1 and A.sendaiensis ATCC 27009T,YNTC-1 may be proposed to be a novel subspecies of A.sendaiensis.However,this viewpoint has to be confirmed by further studies.Co-bioleaching of pyrite and chalcopyrite with strain YN22,Sulfobacillus thermosulfidooxidans,shows that strain YNTC-1 has no evident influence on bioleaching rates of these two sulphide minerals.展开更多
Significant changes in spontaneous potential and exciting currents are observed during water and grout injection in a simulated porous media. Obvious correlations between the seepage flow field and the electric field ...Significant changes in spontaneous potential and exciting currents are observed during water and grout injection in a simulated porous media. Obvious correlations between the seepage flow field and the electric field in the porous media are identified.In this work, a detailed experimental study of geoelectric field variation occurring in water migration was reported by analyzing water and grout injection processes in a simulated porous media. The spontaneous potential varies linearly with the thickness of unsaturated porous media. Very interestingly, the spontaneous potential generated in the second grout injection exhibits some"memory" of previous grouting paths. The decreases in spontaneous potential observed during grout injection is very probably due to that the spontaneous potential variations are primarily caused by electro-filtration potential, as indicated by the far larger viscosity of grout compared to that of water. The geoelectric response can be utilized to effectively identify the grouting paths in water-bearing rocks.展开更多
To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based gen...To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure.展开更多
In order to fundamentally solve the acidification problem of high sulfur-containing bauxite during storage, by simulating the environment of minerals storage in laboratory, the acidification mechanism and influencing ...In order to fundamentally solve the acidification problem of high sulfur-containing bauxite during storage, by simulating the environment of minerals storage in laboratory, the acidification mechanism and influencing factors of high sulfur-containing bauxite were studied and confirmed using the single variable method to control the atmosphere, water and other variables. The results show that the acidification is mostly caused by the oxidation of sulfur-containing bauxite, which is mainly the natural oxidation of Pyrite(Fe S2), then the alkaline minerals dissolute in the presence of water, leading to the acidification phenomenon, which is influenced by moisture and air flow. Finally, more acid-producing substances are formed, resulting in the acidification of high sulfur-containing bauxite. The acidification of high sulfur-containing bauxite results from the combined effect of the oxygen in the air and water, which can be significantly alleviated by controlling the diffusion of the oxygen in air.展开更多
By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite co...By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite collapses within the finite region of [-1,1].Some measures in the optimization algorithm,such as adjusting the searching space of optimized variables continuously by using adaptive mutative scale method and making the most circle time as its control guideline,were taken to ensure its speediness and veracity in seeking the optimization process.The calculation examples about three testing functions reveal that AMSCGA has both high searching speed and high precision.Furthermore,the average truncated generations,the distribution entropy of truncated generations and the ratio of average inertia generations were used to evaluate the optimization efficiency of AMSCGA quantificationally.It is shown that the optimization efficiency of AMSCGA is higher than that of genetic algorithm.展开更多
Combining the clonal selection mechanism of the immune system with the evolution equations of particle swarm optimization, an advanced algorithm was introduced for functions optimization. The advantages of this algori...Combining the clonal selection mechanism of the immune system with the evolution equations of particle swarm optimization, an advanced algorithm was introduced for functions optimization. The advantages of this algorithm lies in two aspects. Via immunity operation, the diversity of the antibodies was maintained, and the speed of convergent was improved by using particle swarm evolution equations. Simulation programme and three functions were used to check the effect of the algorithm. The advanced algorithm were compared with clonal selection algorithm and particle swarm algorithm. The results show that this advanced algorithm can converge to the global optimum at a great rate in a given range, the performance of optimization is improved effectively.展开更多
Assessment of temporal and spatial variations in surface water quality is important to evaluate the health of a watershed and make necessary management decisions to control current and future pollution of receiving wa...Assessment of temporal and spatial variations in surface water quality is important to evaluate the health of a watershed and make necessary management decisions to control current and future pollution of receiving water bodies. In this work, surface water quality data for 12 physical and chemical parameters collected from 10 sampling sites in the Nenjiang River basin during the years(2012-2013) were analyzed. The results show that river water quality has significant temporal and spatial variations. Hierarchical cluster analysis(HCA) grouped 12 months into three periods(LF, MF and HF) and classified 10 monitoring sites into three regions(LP, MP and HP) based on the similarity of water quality characteristics. The principle component analysis(PCA)/factor analysis(FA) was used to recognize the factors or origins responsible for temporal and spatial water quality variations. Temporal and spatial PCA/FA revealed that the Nenjiang River water chemistry was strongly affected by rock/water interaction, hydrologic processes and anthropogenic activities. This work demonstrates that the application of HCA and PCA/FA has achieved meaningful classification based on temporal and spatial criteria.展开更多
文摘[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infrastructure such as pipe networks for urban stormwater management is not enough to deal with urban rainstorm flood disasters under extreme rainfall events.The integration of green,grey and blue systems(GGB-integrated system)is gradually gaining recognition in the field of global flood prevention.It is necessary to further clarify the connotation,technical and engineering implementation strategies of the GGB-integrated system,to provide support for the resilient city construction.[Methods]Through literature retrieval and analysis,the relevant research and progress related to the layout optimization and joint scheduling optimization of the GGBintegrated system were systematically reviewed.In response to existing limitations and future engineering application requirements,key supporting technologies including the utilization of overground emergency storage spaces,safety protection of underground important infrastructure and multi-departmental collaboration,were proposed.A layout optimization framework and a joint scheduling framework for the GGB-integrated system were also developed.[Results]Current research on layout optimization predominantly focuses on the integration of green system and grey system,with relatively fewer studies incorporating blue system infrastructure into the optimization process.Moreover,these studies tend to be on a smaller scale with simpler scenarios,which do not fully capture the complexity of real-world systems.Additionally,optimization objective tend to prioritize environmental and economic goals,while social and ecological factors are less frequently considered.Current research on joint scheduling optimization is often limited to small-scale plots,with insufficient attention paid to the entire system.There is a deficiency in method for real-time,automated determination of optimal control strategies for combinations of multiple system facilities based on actual rainfall-runoff processes.Additionally,the application of emergency facilities during extreme conditions is not sufficiently addressed.Furthermore,both layout optimization and joint scheduling optimization lack consideration of the mute feed effect of flood and waterlogging in urban,watershed and regional scales.[Conclusion]Future research needs to improve the theoretical framework for layout optimization and joint scheduling optimization of GGB-integrated system.Through the comprehensive application of the Internet of things,artificial intelligence,coupling model development,multi-scale analysis,multi-scenario simulation,and the establishment of multi-departmental collaboration mechanisms,it can enhance the flood resilience of urban areas in response to rainfall events of varying intensities,particularly extreme rainfall events.
基金Science and Technology Commission of Shanghai Municipality(21ZR1472900,22ZR1471600)。
文摘Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.
基金Project(51578272)supported by the National Natural Science Foundation of China
文摘Calcined ginger nuts admixed by fly ash and quartz sand(CGN-(F+S))has been validated to be basically compatible to earthen sites as an anchor grout.Accelerated ageing tests including water stability test,temperature and humidity cycling test,soundness test and alkali resistance test are conducted with the objective to further research the property changes of CGN-(F+S)grout.Density,surface hardness,water penetration capacity,water permeability capacity,soluble salt,scanning electron microscopy(SEM)images and energy dispersive spectrometry(EDS)spectrum of these samples have been tested after accelerated ageing tests.The results show that densities of samples decrease,surface hardness,water penetration capacity and water permeability capacity of samples increase generally.Besides,soluble salt analysis,SEM and EDS results well corroborate the changes.Based on the results it can be concluded that property changes are most serious after temperature and humidity cycling test,followed by water stability,soundness and alkali resistance test in sequence.But in general,CGN-(F+S)still has good durability.
基金Project(2007DFR70070) supported by China-Russia Government-to-Government Scientific and Technical Cooperation Foundation
文摘The effect of strain hardening and strain softening behavior of flow stress changing with temperature on welding residual stress, plastic strain and welding distortion of ATN0 1-T4 aluminum alloy was studied by finite simulation method. The simulation results show that the weld seam undergoes strain hardening in the temperature range of 180-250 ℃, however, it exhibits strain softening at temperature above 250 ℃ during welding heating and cooling process. As a result, the strain hardening and strain softening effects counteract each other, introducing slightly influence on the welding residual stress, residual plastic strain and distortion. The welding longitudinal residual stress was determined by ultrasonic stress measurement method for the flat plates of A7N01-T4 aluminum alloy. The simulation results are well accordant with test ones.
基金Project(50621063)supported by the Chinese National Natural Science Foundation for Innovative Research GroupsProject(2004CB619201)supported by the Major State Basic Research Development Program of China
文摘A heterotrophic acidothermophilic bacterial strain,YNTC-1,was isolated from an acidic hot spring in Tengchong,Yunan,China.YNTC-1 grows at pH value of 1.5-8.0 and temperature of 40-70℃,with optimal pH and temperature at 3.0 and 55℃,respectively.The cells of the strain are in shape of short rod,with 1.0-1.2μm in length and 0.7-0.8μm in diameter,and with distinct spores at both poles of each cell.The predominant fatty acids in cellular membrane of the strain are C18:1ω7c.16s rRNA gene analysis reveals that this strain is closely related to Alicyclobacillus sendaiensis,with over 99%sequence similarity.Based on phenotypic and genotypic analyses,YNTC-1 is identified as a member of A.sendaiensis.Considering some important morphological and biochemical differences between strain YNTC-1 and A.sendaiensis ATCC 27009T,YNTC-1 may be proposed to be a novel subspecies of A.sendaiensis.However,this viewpoint has to be confirmed by further studies.Co-bioleaching of pyrite and chalcopyrite with strain YN22,Sulfobacillus thermosulfidooxidans,shows that strain YNTC-1 has no evident influence on bioleaching rates of these two sulphide minerals.
基金Project(2013CB036003)supported by the National Basic Research,Program of ChinaProject(2010QNA54)Fundamental Research Funds for the Central Universities,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Significant changes in spontaneous potential and exciting currents are observed during water and grout injection in a simulated porous media. Obvious correlations between the seepage flow field and the electric field in the porous media are identified.In this work, a detailed experimental study of geoelectric field variation occurring in water migration was reported by analyzing water and grout injection processes in a simulated porous media. The spontaneous potential varies linearly with the thickness of unsaturated porous media. Very interestingly, the spontaneous potential generated in the second grout injection exhibits some"memory" of previous grouting paths. The decreases in spontaneous potential observed during grout injection is very probably due to that the spontaneous potential variations are primarily caused by electro-filtration potential, as indicated by the far larger viscosity of grout compared to that of water. The geoelectric response can be utilized to effectively identify the grouting paths in water-bearing rocks.
基金Project(2012ZX04010-081) supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure.
基金Project(2013AA064102)supported by the National High Technology Research and Development Program of China
文摘In order to fundamentally solve the acidification problem of high sulfur-containing bauxite during storage, by simulating the environment of minerals storage in laboratory, the acidification mechanism and influencing factors of high sulfur-containing bauxite were studied and confirmed using the single variable method to control the atmosphere, water and other variables. The results show that the acidification is mostly caused by the oxidation of sulfur-containing bauxite, which is mainly the natural oxidation of Pyrite(Fe S2), then the alkaline minerals dissolute in the presence of water, leading to the acidification phenomenon, which is influenced by moisture and air flow. Finally, more acid-producing substances are formed, resulting in the acidification of high sulfur-containing bauxite. The acidification of high sulfur-containing bauxite results from the combined effect of the oxygen in the air and water, which can be significantly alleviated by controlling the diffusion of the oxygen in air.
基金Project(60874114) supported by the National Natural Science Foundation of China
文摘By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite collapses within the finite region of [-1,1].Some measures in the optimization algorithm,such as adjusting the searching space of optimized variables continuously by using adaptive mutative scale method and making the most circle time as its control guideline,were taken to ensure its speediness and veracity in seeking the optimization process.The calculation examples about three testing functions reveal that AMSCGA has both high searching speed and high precision.Furthermore,the average truncated generations,the distribution entropy of truncated generations and the ratio of average inertia generations were used to evaluate the optimization efficiency of AMSCGA quantificationally.It is shown that the optimization efficiency of AMSCGA is higher than that of genetic algorithm.
基金Project(A1420060159) supported by the National Basic Research of China projects(60234030, 60404021) supported by the National Natural Science Foundation of China
文摘Combining the clonal selection mechanism of the immune system with the evolution equations of particle swarm optimization, an advanced algorithm was introduced for functions optimization. The advantages of this algorithm lies in two aspects. Via immunity operation, the diversity of the antibodies was maintained, and the speed of convergent was improved by using particle swarm evolution equations. Simulation programme and three functions were used to check the effect of the algorithm. The advanced algorithm were compared with clonal selection algorithm and particle swarm algorithm. The results show that this advanced algorithm can converge to the global optimum at a great rate in a given range, the performance of optimization is improved effectively.
基金Project(2012ZX07501002-001)supported by Major Science and Technology Program for Water Pollution Control and Treatment of the Ministry of Science and Technology,China
文摘Assessment of temporal and spatial variations in surface water quality is important to evaluate the health of a watershed and make necessary management decisions to control current and future pollution of receiving water bodies. In this work, surface water quality data for 12 physical and chemical parameters collected from 10 sampling sites in the Nenjiang River basin during the years(2012-2013) were analyzed. The results show that river water quality has significant temporal and spatial variations. Hierarchical cluster analysis(HCA) grouped 12 months into three periods(LF, MF and HF) and classified 10 monitoring sites into three regions(LP, MP and HP) based on the similarity of water quality characteristics. The principle component analysis(PCA)/factor analysis(FA) was used to recognize the factors or origins responsible for temporal and spatial water quality variations. Temporal and spatial PCA/FA revealed that the Nenjiang River water chemistry was strongly affected by rock/water interaction, hydrologic processes and anthropogenic activities. This work demonstrates that the application of HCA and PCA/FA has achieved meaningful classification based on temporal and spatial criteria.