期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
基于高斯混合带势概率假设密度滤波器的未知杂波下多机动目标跟踪算法 被引量:8
1
作者 胡子军 张林让 +1 位作者 张鹏 王纯 《电子与信息学报》 EI CSCD 北大核心 2015年第1期116-122,共7页
多模型的随机有限集(RFS)类方法是一类有效的多机动目标跟踪算法,但是现有算法都假定杂波统计特性先验已知,不适用于未知杂波背景。该文以高斯混合带势概率假设密度滤波器(GMCPHDF)为基础,提出一种未知杂波下的多机动目标跟踪算法。该... 多模型的随机有限集(RFS)类方法是一类有效的多机动目标跟踪算法,但是现有算法都假定杂波统计特性先验已知,不适用于未知杂波背景。该文以高斯混合带势概率假设密度滤波器(GMCPHDF)为基础,提出一种未知杂波下的多机动目标跟踪算法。该算法对目标和杂波分别独立建模,通过最优高斯(BFG)估计方法对真实目标的强度函数进行预测,从而使多目标强度函数独立于机动目标的运动模型,实现各时刻真实目标的强度函数、杂波源期望个数以及真实目标和杂波源的混合势分布的迭代。仿真结果表明,该算法能够有效地联合估计多机动目标状态以及杂波期望个数。 展开更多
关键词 多机动目标跟踪 未知杂波 势概率假设密度滤波器 最优高斯估计
在线阅读 下载PDF
基于势概率假设密度滤波器的不可分辨目标跟踪算法 被引量:4
2
作者 连峰 元向辉 陈辉 《系统工程与电子技术》 EI CSCD 北大核心 2013年第12期2445-2451,共7页
根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的... 根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的一阶统计矩,还可以传递多目标个数(即势)的概率分布。蒙特卡罗仿真实验表明,相比Mahler提出的不可分辨目标PHD滤波器,所提出的不可分辨目标CPHD滤波器具有更加精确和稳定的多目标个数和状态估计,但它的计算量要大于不可分辨目标PHD滤波器。 展开更多
关键词 不可分辨目标跟踪 势概率假设密度滤波器 随机有限集合 有限集合统计
在线阅读 下载PDF
基于星凸随机超曲面的扩展目标伽马高斯混合势概率假设密度滤波器 被引量:4
3
作者 李翠芸 王精毅 +1 位作者 姬红兵 刘远 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第5期825-830,共6页
针对杂波和检测不确定情况下扩展目标形状估计精度低的问题,提出了一种基于星凸随机超曲面模型(SRHM)的扩展目标伽马高斯混合势概率假设密度(CPHD)滤波器.该算法在高斯混合概率假设密度滤波的框架下,首先将目标形状建模为星凸随机超曲面... 针对杂波和检测不确定情况下扩展目标形状估计精度低的问题,提出了一种基于星凸随机超曲面模型(SRHM)的扩展目标伽马高斯混合势概率假设密度(CPHD)滤波器.该算法在高斯混合概率假设密度滤波的框架下,首先将目标形状建模为星凸随机超曲面,然后通过CPHD滤波估计出目标的质心位置和目标数目,最后通过将已估计的目标质心位置作为目标形状的中心点来结合量测对目标形状进行估计.其中,算法通过自适应估计尺度变换因子对形状边界进行约束优化,解决了星凸随机超曲面模型存在的边界形状不规则的问题.设计扩展目标个数未知以及含有杂波的实验场景,实验结果验证了该算法的有效性和可行性. 展开更多
关键词 星凸随机超曲面 势概率假设密度滤波器 形状估计 伽马函数 约束优化
在线阅读 下载PDF
一种纯方位多目标跟踪的联合多高斯混合概率假设密度滤波器 被引量:1
4
作者 薛昱 冯西安 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第11期4295-4304,共10页
现有的多模型-高斯混合-概率假设密度(MM-GM-PHD)滤波器被广泛用于不确定机动目标跟踪,但它不能在不同模型下保持并行的估计,导致各模型的似然值滞后于目标机动。为此,该文提出一种联合多高斯混合概率假设密度(JMGM-PHD)滤波器,并将其... 现有的多模型-高斯混合-概率假设密度(MM-GM-PHD)滤波器被广泛用于不确定机动目标跟踪,但它不能在不同模型下保持并行的估计,导致各模型的似然值滞后于目标机动。为此,该文提出一种联合多高斯混合概率假设密度(JMGM-PHD)滤波器,并将其用于纯方位多目标跟踪。首先,推导了JMGM模型,其中每个单目标状态估计由一组并行的、带模型概率的高斯函数描述,该状态估计的概率由一个非负的权重来表征。一组权值、模型概率、均值和协方差被统称为JMGM分量。根据贝叶斯规则,推导了JMGM分量的更新方法。然后,利用JMGM模型近似多目标PHD。根据交互式多模型(IMM)规则,推导出JMGM分量的交互、预测和估计方法。将所提JMGM-PHD滤波器应用于纯方位跟踪(BOT)时,针对同时执行平移和旋转的观测站,基于复合函数求导规则推导出一种计算线性化观测矩阵的方法。所提JMGM-PHD滤波器保持了单模型PHD滤波器的形式,但能够自适应地跟踪不确定机动目标。仿真结果表明,JMGM-PHD滤波器克服了似然值滞后于目标机动的问题,在跟踪精度和计算成本方面均优于MM-GM-PHD滤波器。 展开更多
关键词 不确定机动目标跟踪 概率假设密度滤波器 交互多模型 平移和旋转 纯方位跟踪
在线阅读 下载PDF
高斯混合概率假设密度滤波器在多目标跟踪中的应用 被引量:17
5
作者 吕学斌 周群彪 +2 位作者 陈正茂 熊运余 蔡葵 《计算机学报》 EI CSCD 北大核心 2012年第2期397-404,共8页
实现了基于随机集和点过程理论在目标数未知或随时间变化的多目标跟踪滤波算法.研究成果包括:(1)分析了基于随机有限集的多目标跟踪模型;(2)分析推导了基于随机集和点过程理论的概率假设密度滤波递推表达式;(3)实现了在线性高斯条件下... 实现了基于随机集和点过程理论在目标数未知或随时间变化的多目标跟踪滤波算法.研究成果包括:(1)分析了基于随机有限集的多目标跟踪模型;(2)分析推导了基于随机集和点过程理论的概率假设密度滤波递推表达式;(3)实现了在线性高斯条件下的概率假设密度滤波的一种解析滤波算法;(4)仿真实验验证了算法的性能,比较了在杂波强度和检测概率变化的情况下和联合概率数据互联算法相关性能;(5)指出了算法的一些不足以及改进的研究方向. 展开更多
关键词 高斯混合概率假设密度(PHD)滤波器 概率假设密度滤波器 随机集 多目标跟踪 联合概率数据互联
在线阅读 下载PDF
高斯混合扩展目标概率假设密度滤波器的收敛性分析 被引量:16
6
作者 连峰 韩崇昭 +1 位作者 刘伟峰 元向辉 《自动化学报》 EI CSCD 北大核心 2012年第8期1343-1352,共10页
研究了高斯混合扩展目标概率假设密度(Gaussian mixture extended-target probability hypothesis density,GM-EPHD)滤波器的收敛性问题,证明了在杂波强度先验已知且扩展目标的期望测量个数连续有界的假设条件下,若该GM-EPHD滤波器的GM... 研究了高斯混合扩展目标概率假设密度(Gaussian mixture extended-target probability hypothesis density,GM-EPHD)滤波器的收敛性问题,证明了在杂波强度先验已知且扩展目标的期望测量个数连续有界的假设条件下,若该GM-EPHD滤波器的GM项趋于无穷多,那么它一致收敛于真实的EPHD滤波器.并且,本文还证明了该算法在弱非线性条件下的扩展卡尔曼(Extended Kalman,EK)滤波近似实现—EK-GM-EPHD滤波器,在每个GM项的协方差趋于0时,也一致收敛于真实的EPHD滤波器.本文的研究目的在于从理论上给出GM-EPHD和EK-GM-EPHD滤波器的收敛性结果以及它们满足一致收敛性的条件. 展开更多
关键词 扩展目标跟踪 概率假设密度滤波器 高斯混合方法 收敛性分析
在线阅读 下载PDF
基于势概率假设密度滤波的检测前跟踪新算法 被引量:13
7
作者 林再平 周一宇 安玮 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2013年第5期437-443,共7页
基于势概率假设密度滤波(Cardinalized Probability Hypothesis Density,CPHD)检测前跟踪(Track before detect,TBD)算法能有效解决未知目标数的弱小目标检测跟踪.文章深入研究了CPHD算法,从标准CPHD滤波的粒子权重更新出发,结合检测前... 基于势概率假设密度滤波(Cardinalized Probability Hypothesis Density,CPHD)检测前跟踪(Track before detect,TBD)算法能有效解决未知目标数的弱小目标检测跟踪.文章深入研究了CPHD算法,从标准CPHD滤波的粒子权重更新出发,结合检测前跟踪的实际,合理地推导出CPHD-TBD算法的粒子权重更新表达式;分析了CPHD滤波目标势分布的物理意义,实现了目标势分布更新计算在检测前跟踪的应用.将CPHD滤波和TBD进行有效结合,提出了基于势概率假设密度滤波的检测前跟踪算法,并给出其详细实现步骤.仿真实验证明提出的CPHD-TBD算法与现有概率假设密度检测前跟踪(PHD-TBD)算法相比,能更详细地传递目标分布信息,从本质上改变了PHD-TBD对目标数估计的方式,能更准确稳定估计目标数,实现了对目标的发现和状态准确估计,性能明显更优. 展开更多
关键词 检测前跟踪 概率假设密度滤波 粒子更新 分布更新
在线阅读 下载PDF
基于标签概率假设密度滤波器的抗交叉眼干扰方法 被引量:1
8
作者 陈安娜 《弹箭与制导学报》 CSCD 北大核心 2018年第2期111-115,共5页
交叉眼干扰利用波前扭曲引起跟踪雷达瞄准点转向虚拟的强干扰方向,使得雷达的角度测量与跟踪失效。为对抗交叉眼干扰,文中在随机有限集理论(random finite set,RFS)的基础上,引入标签概率假设密度(probability hypothesis density,PHD)... 交叉眼干扰利用波前扭曲引起跟踪雷达瞄准点转向虚拟的强干扰方向,使得雷达的角度测量与跟踪失效。为对抗交叉眼干扰,文中在随机有限集理论(random finite set,RFS)的基础上,引入标签概率假设密度(probability hypothesis density,PHD)滤波器用于判断目标的真实位置。将真实目标和干扰建模视为两个不同的信号,通过预测、校正、重采样、状态估计、航迹提取给目标和干扰分配不同的标签,实现对目标与干扰的正确区分。仿真表明标签PHD滤波器能够在交叉眼干扰存在的情况下正确识别估计出目标的状态信息且估计误差较小。 展开更多
关键词 标签 概率假设密度滤波器 交叉眼 抗干扰 随机有限集
在线阅读 下载PDF
狄拉克加权和概率假设密度滤波器
9
作者 刘宗香 李丽娟 +1 位作者 谢维信 李良群 《信号处理》 CSCD 北大核心 2015年第5期505-513,共9页
为解决在存在杂波、过程噪声协方差未知、目标数未知和变化情况下的多目标跟踪问题,提出了一种适用于线性系统模型的狄拉克加权和概率假设密度滤波器。该滤波器将多目标的后验矩表征为狄拉克加权和的形式。类似于高斯混合PHD滤波器,该... 为解决在存在杂波、过程噪声协方差未知、目标数未知和变化情况下的多目标跟踪问题,提出了一种适用于线性系统模型的狄拉克加权和概率假设密度滤波器。该滤波器将多目标的后验矩表征为狄拉克加权和的形式。类似于高斯混合PHD滤波器,该滤波器在递归过程中传递多目标的后验矩。不像高斯混合PHD滤波器用卡尔曼滤波器获取多目标的后验更新矩,该滤波器采用变系数α-β滤波器获取多目标的更新后验矩。同时,也提出了一种变系数α-β滤波器中参数α和β的确定方法。仿真实验结果表明,所提出的滤波器为存在杂波、过程噪声协方差未知、目标数未知和变化情况下的多目标跟踪问题提供了一种有效途径,它的平均执行时间小于高斯混合PHD滤波器的平均执行时间,所以具有良好的工程应用前景。 展开更多
关键词 多目标跟踪 概率假设密度滤波器 狄拉克函数 Α-Β滤波器 线性系统
在线阅读 下载PDF
基于改进概率假设密度滤波器的非合作双基地雷达目标跟踪 被引量:4
10
作者 王森 鲍庆龙 +1 位作者 潘嘉蒙 祝茜 《系统工程与电子技术》 EI CSCD 北大核心 2023年第7期2002-2009,共8页
为解决非合作双基地雷达目标跟踪面临的低检测概率和高杂波率问题,提出了改进的概率假设密度滤波器。首先,提出一种新的航迹标识与状态估计方法,并将存活概率定义为与目标状态相关的变量;随后,记录每个候选目标在每一时刻是否有量测的情... 为解决非合作双基地雷达目标跟踪面临的低检测概率和高杂波率问题,提出了改进的概率假设密度滤波器。首先,提出一种新的航迹标识与状态估计方法,并将存活概率定义为与目标状态相关的变量;随后,记录每个候选目标在每一时刻是否有量测的情况,采用序贯概率比检验区分真实目标和由杂波引起的假目标;最后,离线估计目标状态。仿真实验结果表明,所提算法明显提高了非合作双基地雷达目标跟踪的性能,可以有效解决低检测概率和高杂波率问题。 展开更多
关键词 非合作双基地雷达 目标跟踪 改进概率假设密度滤波器 序贯概率比检验
在线阅读 下载PDF
未知杂波条件下样本集校正的势估计概率假设密度滤波算法 被引量:4
11
作者 杨丹 姬红兵 张永权 《电子与信息学报》 EI CSCD 北大核心 2018年第4期912-919,共8页
在贝叶斯框架下的多目标跟踪算法中,总是假设杂波的先验信息是已知的。然而,实际应用中,杂波分布一般是未知的,假设的杂波分布往往与实际情况匹配度差,难以保证滤波精度。针对该问题,该文研究了未知杂波势估计概率假设密度(CPHD)滤波算... 在贝叶斯框架下的多目标跟踪算法中,总是假设杂波的先验信息是已知的。然而,实际应用中,杂波分布一般是未知的,假设的杂波分布往往与实际情况匹配度差,难以保证滤波精度。针对该问题,该文研究了未知杂波势估计概率假设密度(CPHD)滤波算法。首先,提出一种基于狄利克雷过程混合模型(DPMM)类的未知杂波CPHD算法,该算法能够自动选取合适的类数对杂波进行描述,有效降低了杂波空间分布估计的误差。此外,提出样本集校正的思想,并将其引入所提算法,通过去除样本集中由真实目标产生的量测,较好地解决了杂波数过估和目标数低估的问题。与传统算法相比,所提算法的滤波精度更接近于杂波信息匹配情况下的性能,仿真结果验证了其优越性与鲁棒性。 展开更多
关键词 多目标跟踪 参数估计 未知杂波 狄利克雷过程混合模型 估计概率假设密度滤波
在线阅读 下载PDF
一种粒子势概率假设密度滤波纯方位多目标跟踪算法 被引量:6
12
作者 张俊根 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第6期1319-1325,共7页
针对基于势概率假设密度算法(CPHD)的纯方位多目标跟踪,提出一种新型的多传感器粒子CPHD滤波算法.该算法通过分析混合线性/非线性状态模型的结构信息,结合粒子滤波(PF)与卡尔曼滤波(KF)对各个目标的状态进行预测与估计,运用Mean-Shift... 针对基于势概率假设密度算法(CPHD)的纯方位多目标跟踪,提出一种新型的多传感器粒子CPHD滤波算法.该算法通过分析混合线性/非线性状态模型的结构信息,结合粒子滤波(PF)与卡尔曼滤波(KF)对各个目标的状态进行预测与估计,运用Mean-Shift方法提取概率假设密度的峰值作为目标状态估计值,并对算法复杂度进行了分析.仿真结果表明,算法可改善目标跟踪效果. 展开更多
关键词 纯方位多目标跟踪 概率假设密度 粒子滤波 多传感器 均值漂移
在线阅读 下载PDF
基于双马尔科夫链的势概率假设密度滤波 被引量:3
13
作者 刘江义 王春平 《电子与信息学报》 EI CSCD 北大核心 2019年第2期492-497,共6页
针对已有的基于双马尔科夫链(PMC)模型的势概率假设密度(PMC-CPHD)滤波算法无法实现的问题,将PMC-CPHD算法改进为多项式形式以便于算法的实现,并给出了改进算法的高斯混合(GM)实现。实验结果表明给出的GM实现能够有效实现多目标跟踪,并... 针对已有的基于双马尔科夫链(PMC)模型的势概率假设密度(PMC-CPHD)滤波算法无法实现的问题,将PMC-CPHD算法改进为多项式形式以便于算法的实现,并给出了改进算法的高斯混合(GM)实现。实验结果表明给出的GM实现能够有效实现多目标跟踪,并且比基于PMC模型的概率假设密度(PMC-PHD)算法的GM实现提高了目标个数估计的稳定性。 展开更多
关键词 双马尔科夫链 概率假设密度 高斯混合
在线阅读 下载PDF
基于高斯混合势化概率假设密度的脉冲多普勒雷达多目标跟踪算法 被引量:6
14
作者 吴卫华 江晶 +1 位作者 冯讯 刘重阳 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1490-1494,共5页
为在新兴的随机有限集(RFS)框架下充分利用多普勒信息跟踪杂波环境下的多目标,该文提出基于高斯混合势化概率假设密度(GM-CPHD)的脉冲多普勒雷达多目标跟踪(MTT)算法。该算法在标准GM-CPHD基础上,在使用位置量测更新状态后,再利用多普... 为在新兴的随机有限集(RFS)框架下充分利用多普勒信息跟踪杂波环境下的多目标,该文提出基于高斯混合势化概率假设密度(GM-CPHD)的脉冲多普勒雷达多目标跟踪(MTT)算法。该算法在标准GM-CPHD基础上,在使用位置量测更新状态后,再利用多普勒量测进行序贯更新,可获得更精确的似然函数和状态估计。仿真结果验证了该算法的有效性,表明在GM-CPHD基础上引入目标的多普勒信息可有效抑制杂波,显著改善跟踪性能。 展开更多
关键词 多目标跟踪 随机有限集 概率假设密度 高斯混合概率假设密度 脉冲多普勒雷达
在线阅读 下载PDF
基于序贯蒙特卡罗概率假设密度滤波的多目标检测前跟踪改进算法 被引量:14
15
作者 占荣辉 刘盛启 +1 位作者 欧建平 张军 《电子与信息学报》 EI CSCD 北大核心 2014年第11期2593-2599,共7页
实现目标数目未知且可变条件下的多目标检测与跟踪是个极具挑战性的问题,在信噪比较低的情况下更是如此。针对这一问题,该文提出一种基于点扩散模型的多目标检测前跟踪改进算法。该算法在序贯蒙特卡罗概率假设密度(SMC-PHD)滤波框架下实... 实现目标数目未知且可变条件下的多目标检测与跟踪是个极具挑战性的问题,在信噪比较低的情况下更是如此。针对这一问题,该文提出一种基于点扩散模型的多目标检测前跟踪改进算法。该算法在序贯蒙特卡罗概率假设密度(SMC-PHD)滤波框架下实现,通过自适应粒子产生机制完成新生目标在像平面中的初始定位,并根据目标在图像中可能出现的位置对全体粒子集进行有效子集分割和快速权值估算,最后利用动态聚类方法完成多目标状态的准确提取。仿真结果表明,该方法有效改善了多目标检测前跟踪的估计性能,并大大提高了算法执行效率。 展开更多
关键词 多目标检测前跟踪 概率假设密度滤波器 自适应粒子采样 动态聚类 序贯蒙特卡罗
在线阅读 下载PDF
基于噪声方差估计的高斯混合概率假设密度滤波算法 被引量:5
16
作者 梁荔 敬忠良 +1 位作者 董鹏 李旻哲 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第9期1355-1361,共7页
针对传统的高斯混合概率假设密度(GM-PHD)滤波器在噪声先验特性未知或不准确时跟踪性能会下降,提出了一种基于噪声方差估计的高斯混合概率假设密度(NCE-GM-PHD)滤波算法.该算法可以同时在线估计时变的目标个数、多目标状态以及噪声方差... 针对传统的高斯混合概率假设密度(GM-PHD)滤波器在噪声先验特性未知或不准确时跟踪性能会下降,提出了一种基于噪声方差估计的高斯混合概率假设密度(NCE-GM-PHD)滤波算法.该算法可以同时在线估计时变的目标个数、多目标状态以及噪声方差.首先,通过引入遗忘因子和采取有偏估计的方法改进了传统的Sage-Husa自适应滤波器.基于改进的自适应滤波器,推导了带噪声方差估计的GM-PHD滤波算法.仿真结果表明,在非时变或时变量测噪声方差未知的情况下,NCE-GM-PHD算法的跟踪性能优于传统的GM-PHD算法,对噪声变化的适应能力更强. 展开更多
关键词 高斯混合概率假设密度滤波器 多目标跟踪 噪声方差估计 自适应滤波器
在线阅读 下载PDF
基于椭圆随机超曲面模型CPHD滤波器的多扩展目标跟踪算法
17
作者 滕明 侯亚威 李伟杰 《现代雷达》 CSCD 北大核心 2024年第5期26-30,共5页
复杂场景下多扩展目标跟踪在自动驾驶、目标识别等领域具有很高的应用价值。文中提出了一种基于椭圆随机超曲面模型(ERHM)的势概率假设密度(CPHD)滤波器。首先,基于有限集统计理论,利用CPHD滤波器建立多扩展目标的贝叶斯滤波框架;然后,... 复杂场景下多扩展目标跟踪在自动驾驶、目标识别等领域具有很高的应用价值。文中提出了一种基于椭圆随机超曲面模型(ERHM)的势概率假设密度(CPHD)滤波器。首先,基于有限集统计理论,利用CPHD滤波器建立多扩展目标的贝叶斯滤波框架;然后,采用ERHM描述扩展目标的量测源分布,并利用无迹变换嵌入CPHD滤波流程;最后,仿真实验结果表明,ERHM-CPHD滤波器对椭圆扩展目标的跟踪性能优于传统的伽马高斯逆威沙特CPHD滤波器,在杂波密度较高、目标新生的位置比较确定的场景或者扩展目标数目较多时,对扩展目标的参数估计更为准确。所提方法在高分辨率雷达多目标跟踪方面具备很好的运用前景。 展开更多
关键词 多扩展目标跟踪 椭圆随机超曲面 势概率假设密度滤波器 无迹变换
在线阅读 下载PDF
多模型概率假设密度平滑器 被引量:16
18
作者 连峰 韩崇昭 +1 位作者 刘伟峰 元向辉 《自动化学报》 EI CSCD 北大核心 2010年第7期939-950,共12页
针对杂波环境下的多个机动目标跟踪问题,本文将多模型概率假设密度(Multiple-model probability hypothesis density,MM-PHD)滤波器和平滑算法相结合,提出了MM-PHD前向–后向平滑器.为了避免引入复杂的随机有限集(Random finiteset,RFS... 针对杂波环境下的多个机动目标跟踪问题,本文将多模型概率假设密度(Multiple-model probability hypothesis density,MM-PHD)滤波器和平滑算法相结合,提出了MM-PHD前向–后向平滑器.为了避免引入复杂的随机有限集(Random finiteset,RFS)理论,本文根据PHD的物理空间(Physical space)描述法推导得到了MM-PHD平滑器的后向更新公式.由于MM-PHD前向–后向平滑器的递推公式中包含有多个积分,因此它在非线性非高斯条件下没有解析的表达形式.故本文又给出了它的序贯蒙特卡洛(Sequential Monte Carlo,SMC)实现.100次蒙特卡洛(Monte Carlo,MC)仿真实验表明,与MM-PHD滤波器相比,MM-PHD平滑器能够更加精确地估计多个机动目标的个数和状态,但MM-PHD平滑器存在一定的时间滞后,并且需要耗费更大的计算代价. 展开更多
关键词 多个机动目标跟踪 概率假设密度滤波器 概率假设密度平滑器 交互式多模型
在线阅读 下载PDF
一种有轨迹标识的利用测量生成新目标密度的GM-PHD滤波器
19
作者 刘宗香 谢维信 王品 《信号处理》 CSCD 北大核心 2011年第9期1281-1285,共5页
在存在杂波、漏检、目标数目未知和变化的情况下,PHD滤波器是一种多目标跟踪新方法,GM-PHD滤波器是PHD滤波器的一种近似实现。然而,GM-PHD滤波器没有提供单个目标状态估计的身份,而构建目标运动轨迹需要目标状态估计的身份,同时,现有的G... 在存在杂波、漏检、目标数目未知和变化的情况下,PHD滤波器是一种多目标跟踪新方法,GM-PHD滤波器是PHD滤波器的一种近似实现。然而,GM-PHD滤波器没有提供单个目标状态估计的身份,而构建目标运动轨迹需要目标状态估计的身份,同时,现有的GM-PHD滤波器在新目标密度生成时对新目标出现位置进行了限制,难以对观测空间任意位置随机出现的目标进行跟踪。为解决非线性观测系统GM-PHD滤波器中目标状态估计的身份标识和新目标密度生成问题,设计了一种新的GM-PHD滤波器。该滤波器利用传感器的观测数据生成新目标密度,通过给滤波器输出的高斯项增加专有身份标识并使用身份标识将源于同一目标不同时刻的目标状态估计关联起来。仿真实验验证了滤波算法的有效性。 展开更多
关键词 多目标跟踪 概率假设密度滤波器 新目标密度生成 身份标识
在线阅读 下载PDF
一种具有信息保持能力的GM-PHD滤波器 被引量:8
20
作者 刘宗香 谢维信 +1 位作者 王品 余友 《电子学报》 EI CAS CSCD 北大核心 2013年第8期1603-1608,共6页
概率假设密度(PHD)滤波器是解决虚警、漏检和目标数未知情况下多目标跟踪问题的新方法.然而在该滤波器中已存在的目标一旦在某个时刻不能被传感器检测到,漏检目标的大量信息会被滤波器丢弃.为解决漏检目标的信息丢失问题,对PHD滤波器的... 概率假设密度(PHD)滤波器是解决虚警、漏检和目标数未知情况下多目标跟踪问题的新方法.然而在该滤波器中已存在的目标一旦在某个时刻不能被传感器检测到,漏检目标的大量信息会被滤波器丢弃.为解决漏检目标的信息丢失问题,对PHD滤波器的预测和更新方程进行了修正,提出了一种具有信息保持能力的PHD滤波器.在此基础上提出了适用于线性高斯模型的修正PHD滤波器高斯混合(GM)实现算法.仿真实验结果表明,与现有的PHD滤波器相比,在存在漏检的情况下所提出的GM-PHD滤波器能够提供更好的多目标跟踪能力. 展开更多
关键词 多目标跟踪 概率假设密度滤波器 高斯混合实现 线性高斯模型
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部