期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于标准化动量BP神经网络的GPS高程转换 被引量:18
1
作者 朱卫东 李全海 《大地测量与地球动力学》 CSCD 北大核心 2010年第1期123-125,共3页
采用动量BP神经网络算法拟合高程求解,训练样本的量纲存在一定的差异性,为改善不稳定性,通过对样本进行标准化处理,得到了理想的训练效果。将该方法得到的计算结果与平面拟合、二次曲面拟合及其他神经网络方法计算的结果进行对比得出:... 采用动量BP神经网络算法拟合高程求解,训练样本的量纲存在一定的差异性,为改善不稳定性,通过对样本进行标准化处理,得到了理想的训练效果。将该方法得到的计算结果与平面拟合、二次曲面拟合及其他神经网络方法计算的结果进行对比得出:标准化动量BP神经网络算法求解高程,精度可靠且稳定。 展开更多
关键词 动量bp神经网络 大地高 正常高 高程异常 标准化
在线阅读 下载PDF
基于BP和Elman神经网络的福建省汛期旱涝预测模型 被引量:9
2
作者 王艳姣 邓自旺 +1 位作者 王耀庭 宋德众 《南京气象学院学报》 CSCD 北大核心 2004年第6期776-783,共8页
建立了福建汛期旱涝BP和Elman神经网络预测模型,并对两种模型的性能和差异进行了比较,结果表明:动量BP网络模型,特别是具有局部反馈特性的Elman网络模型具有较好的拟合精度和预报效果。此外两种模型对旱涝等级为2和4的预测偏差较大,而... 建立了福建汛期旱涝BP和Elman神经网络预测模型,并对两种模型的性能和差异进行了比较,结果表明:动量BP网络模型,特别是具有局部反馈特性的Elman网络模型具有较好的拟合精度和预报效果。此外两种模型对旱涝等级为2和4的预测偏差较大,而对旱涝等级为3的预测较为准确。 展开更多
关键词 动量bp神经网络 ELMAN神经网络 汛期旱涝 预测模型
在线阅读 下载PDF
基于亚像素配准的神经网络非均匀性校正 被引量:3
3
作者 徐全飞 冯旗 《激光与红外》 CAS CSCD 北大核心 2017年第8期1033-1039,共7页
红外焦平面存在严重影响成像质量的非均匀性,本文使用基于亚像素配准算法和动量项BP神经网络的非均匀性校正算法进行校正。对短波红外相机成像过程中,由于相机视轴与成像目标位置的相对偏移(由相机安装平台晃动所致),使用基于矩阵乘法... 红外焦平面存在严重影响成像质量的非均匀性,本文使用基于亚像素配准算法和动量项BP神经网络的非均匀性校正算法进行校正。对短波红外相机成像过程中,由于相机视轴与成像目标位置的相对偏移(由相机安装平台晃动所致),使用基于矩阵乘法的亚像素配准算法进行配准;为了加速算法收敛,采用两点法来对校正系数进行初始化;为了改善BP神经网络容易陷入局部最优值,采用增加动量项的方法来改善校正效果。通过仿真实验可以看出提出的算法消除了传统神经网络校正方法存在的鬼影和边缘模糊等问题,获得了良好的校正效果,同时提高了算法的收敛速度。为短波红外图像数据后期处理提供了良好的基础。 展开更多
关键词 非均匀性 亚像素配准 动量bp神经网络 收敛速度
在线阅读 下载PDF
基于小波变换与MOBP的股价预测 被引量:3
4
作者 林志勇 张维强 徐晨 《计算机工程与应用》 CSCD 北大核心 2008年第16期215-217,共3页
提出了一种基于小波变换与改进动量BP神经网络(MOBP)的股价预测方法。将股票价格所构成的非平稳时间序列小波分解,建立基于优化权值的改进动量BP神经网络(MOBP)预测模型,对分解得到的近似部分与各细节部分分别进行训练,结合各部分的预... 提出了一种基于小波变换与改进动量BP神经网络(MOBP)的股价预测方法。将股票价格所构成的非平稳时间序列小波分解,建立基于优化权值的改进动量BP神经网络(MOBP)预测模型,对分解得到的近似部分与各细节部分分别进行训练,结合各部分的预测结果,可以得到原始序列的预测值。实验结果表明,这种方法预测效果较为理想,且相对于传统的BP神经网络预测的准确度有明显的提高。 展开更多
关键词 小波变换 改进动量bp神经网络(MObp) 预测 股价
在线阅读 下载PDF
一种短期电力负荷预测新方法的研究与应用 被引量:4
5
作者 靳忠伟 陈康民 +1 位作者 闫伟 王桂华 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第20期4790-4793,共4页
通过对电力负荷变化规律和影响因素的分析,提出了一种新的短期电力负荷预测模型。首先,鉴于模糊聚类方法易陷入局部最优解及运算速度慢的缺点,采用蚁群算法中pij(t)改进模糊聚类分析;然后以每天的24点负荷数据、天气数据以及天类别数据... 通过对电力负荷变化规律和影响因素的分析,提出了一种新的短期电力负荷预测模型。首先,鉴于模糊聚类方法易陷入局部最优解及运算速度慢的缺点,采用蚁群算法中pij(t)改进模糊聚类分析;然后以每天的24点负荷数据、天气数据以及天类别数据为指标,将历史数据聚分成若干簇团,并采用动量BP神经网络针对每一簇团建立相应的预测模型。对山东地区1年的实际数据进行预测分析的结果表明,该模型不仅对普通工作日有较高的预测精度,对双休日、节假日和一些特殊情况(夏季典型日负荷)也有较好的预测精度。 展开更多
关键词 蚁群算法 模糊聚类 动量bp神经网络 负荷预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部