期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
复杂环境中红外亚图像动目标识别跟踪
1
作者 傅志中 李晓峰 李在铭 《信号处理》 CSCD 2002年第3期220-223,共4页
本文分析了红外玫瑰线扫描亚成像制导的成像空间分布函数,提出一种基于神经网络特性的加权图像差分动目标检测模型。应用目标与干扰特征的统计特性,采用边跟踪边识别方法识别真假目标,从而精确跟踪。最后给出了仿真结果。
关键词 红外亚图像 动目标识别 分布函 加权差分 统计特性 红外制导
在线阅读 下载PDF
广域监视模式下新的杂波加噪声谱密度矩阵估计方法 被引量:2
2
作者 闫贺 郑明洁 +1 位作者 李飞 艾加秋 《电子与信息学报》 EI CSCD 北大核心 2011年第12期2852-2857,共6页
该文研究了SAR/GMTI系统广域监视(WAS)模式下杂波的特点,基于该特点,可以通过一个多普勒单元的杂波加噪声谱密度矩阵来估计另一个多普勒单元的杂波加噪声谱密度矩阵,并推导了相应的估计公式。在此基础上提出新的杂波加噪声谱密度矩阵估... 该文研究了SAR/GMTI系统广域监视(WAS)模式下杂波的特点,基于该特点,可以通过一个多普勒单元的杂波加噪声谱密度矩阵来估计另一个多普勒单元的杂波加噪声谱密度矩阵,并推导了相应的估计公式。在此基础上提出新的杂波加噪声谱密度矩阵估计方法,即通过第i 1个和第i+1个多普勒单元的杂波加噪声谱密度矩阵来估计第i个多普勒单元的杂波加噪声谱密度矩阵,并联合特征矢量子空间投影的方法可以大大减弱目标污染样本对空时处理性能的影响。仿真结果表明这种方法的有效性。 展开更多
关键词 SAR 地面动目标识别 广域监视(WAS) 杂波抑制 谱密度矩阵估计 特征矢量子空间投影
在线阅读 下载PDF
WAS-GMTI模式下基于Relax算法的杂波抑制和参数估计方法
3
作者 闫贺 朱岱寅 +4 位作者 张劲东 王旭东 李勇 毛新华 吴迪 《电子与信息学报》 EI CSCD 北大核心 2016年第12期3042-3048,共7页
该文提出一种基于Relax算法的杂波抑制和参数估计方法。该方法适用于多通道广域监视GMTI系统。在分析广域监视模式回波组成的基础上,结合Relax算法,设计了进行杂波抑制的迭代方法。相对于降维空时自适应处理(STAP),该方法不需要估计杂... 该文提出一种基于Relax算法的杂波抑制和参数估计方法。该方法适用于多通道广域监视GMTI系统。在分析广域监视模式回波组成的基础上,结合Relax算法,设计了进行杂波抑制的迭代方法。相对于降维空时自适应处理(STAP),该方法不需要估计杂波加噪声的协方差矩阵,因此可以在非均匀杂波环境下取得较优的杂波抑制效果。该文同时指出,在杂波抑制的基础上,针对存在动目标的距离-多普勒单元继续进行迭代,可实现动目标参数的精确估计。仿真结果验证了上述方法的有效性。 展开更多
关键词 SAR 地面动目标识别 RELAX算法 杂波抑制 参数估计
在线阅读 下载PDF
叶簇穿透雷达系统设计综述(英文) 被引量:4
4
作者 马克V·戴维斯 《雷达科学与技术》 2012年第1期1-9,21,共10页
叶簇穿透(FOPEN)雷达是一种用于发现和表征密集叶簇下人为目标及表征叶簇自身的技术手段。这种雷达已经在军事监视和民用地理空间成像方面得到应用。本次讲座分为三大部分:第一部分讲述FOPEN雷达的早期历史,主要讲述战场监视及叶簇穿透... 叶簇穿透(FOPEN)雷达是一种用于发现和表征密集叶簇下人为目标及表征叶簇自身的技术手段。这种雷达已经在军事监视和民用地理空间成像方面得到应用。本次讲座分为三大部分:第一部分讲述FOPEN雷达的早期历史,主要讲述战场监视及叶簇穿透雷达的早期试验。其中,某些雷达技术的发展意义重大,支撑探测密集叶簇下面固定和移动目标的能力。这些技术中最重要的部分就是众所周知的相干雷达与数字处理技术。同样重要的是雷达穿透叶簇的量化及其散射损耗影响。第二部分重点讨论了几种军民用FOPEN合成孔径雷达系统及其研究成果。在对每种雷达系统概述过程中还通过举例说明SAR图像及其固定目标探测能力。这一部分还给出了量化极化分集在探测和表征人为和自然目标时的好处。在目标描述与降低虚警方面,极化技术的优势明显。最后讨论了超宽带和超宽角成像技术。第三部分讨论的是多模超宽带雷达最新研究及SAR和动目标显示(MTI)FOPEN系统的设计。重点是设计这些超宽带(UWB)系统的优势和困难,以及实际电磁环境下的工作情况。讲座最后两部分阐述了文献中出现的一些用于未来多模式工作的新技术:探测可辨别低速运动目标的需求;双基地SAR与固定GMTI照射波形的协同工作。 展开更多
关键词 叶簇穿透 雷达成像 FOPEN现象学 超宽带超宽角成像 目标表征 动目标识别
在线阅读 下载PDF
Automatic target recognition of moving target based on empirical mode decomposition and genetic algorithm support vector machine 被引量:4
5
作者 张军 欧建平 占荣辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1389-1396,共8页
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S... In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively. 展开更多
关键词 automatic target recognition(ATR) moving target empirical mode decomposition genetic algorithm support vector machine
在线阅读 下载PDF
Fast image matching algorithm based on affine invariants
6
作者 张毅 卢凯 高颖慧 《Journal of Central South University》 SCIE EI CAS 2014年第5期1907-1918,共12页
Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of ext... Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications. 展开更多
关键词 affine invariants image matching extended centroid ROBUSTNESS PERFORMANCE
在线阅读 下载PDF
Time-domain compressive dictionary of attributed scattering center model for sparse representation
7
作者 钟金荣 文贡坚 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期604-622,共19页
Parameter estimation of the attributed scattering center(ASC) model is significant for automatic target recognition(ATR). Sparse representation based parameter estimation methods have developed rapidly. Construction o... Parameter estimation of the attributed scattering center(ASC) model is significant for automatic target recognition(ATR). Sparse representation based parameter estimation methods have developed rapidly. Construction of the separable dictionary is a key issue for sparse representation technology. A compressive time-domain dictionary(TD) for ASC model is presented. Two-dimensional frequency domain responses of the ASC are produced and transformed into the time domain. Then these time domain responses are cutoff and stacked into vectors. These vectored time-domain responses are amalgamated to form the TD. Compared with the traditional frequency-domain dictionary(FD), the TD is a matrix that is quite spare and can markedly reduce the data size of the dictionary. Based on the basic TD construction method, we present four extended TD construction methods, which are available for different applications. In the experiments, the performance of the TD, including the basic model and the extended models, has been firstly analyzed in comparison with the FD. Secondly, an example of parameter estimation from SAR synthetic aperture radar(SAR) measurements of a target collected in an anechoic room is exhibited. Finally, a sparse image reconstruction example is from two apart apertures. Experimental results demonstrate the effectiveness and efficiency of the proposed TD. 展开更多
关键词 attributed scattering center model parameter estimation DICTIONARY time domain
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部