期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于多次波形匹配的高速铁路动检数据里程误差评估与修正 被引量:13
1
作者 汪鑫 王平 +2 位作者 陈嵘 高原 刘潇潇 《铁道学报》 EI CAS CSCD 北大核心 2020年第2期110-116,共7页
获取具有准确里程信息的动检车检测数据,是实现高速铁路线路的高效养护维修与分析其状态演变规律的基本前提。针对当前处理动检数据里程误差的不足,如区段内数据波形重复性差或依据单次检测数据处理误差等会造成错误修正,通过引入约束... 获取具有准确里程信息的动检车检测数据,是实现高速铁路线路的高效养护维修与分析其状态演变规律的基本前提。针对当前处理动检数据里程误差的不足,如区段内数据波形重复性差或依据单次检测数据处理误差等会造成错误修正,通过引入约束条件、动态尺度系数以识别、处理特殊区段并综合考虑多次检测数据,提出一种更可靠的里程误差评估模型,采用拉格朗日乘子法求解该模型并基于线性变换与插值方法修正里程误差,最后应用该方法编制了动检数据分析软件。结合某高速铁路动检数据研究发现:不合理的模型尺度参数会降低修正精度,建议取40~120m;在99.7%置信度下,任意两次动检数据间里程误差可控制在0.54m内;本文方法能有效处理实际工程中动检数据的里程误差问题,结合数据点标准差方法可实现快速定位线路几何状态波动明显的位置并准确评估线路养护维修作业效果。 展开更多
关键词 高速铁路 动检数据 里程误差 数据波形 拉格朗日乘子法
在线阅读 下载PDF
基于深度学习的轨道动检干扰数据识别与分类
2
作者 苏成光 高凯 +3 位作者 张岷 张煜 杨飞 程培涛 《铁道学报》 北大核心 2025年第2期102-110,共9页
针对阳光、雨雪、设备故障等因素对轨道动检数据产生的干扰难以识别,人工分类效率低且易出现漏检与误检等问题,提出一种基于一维多通道特征融合的轨道动检数据分类算法,对高速铁路轨道动检数据的干扰因素进行智能识别与分类。该算法设... 针对阳光、雨雪、设备故障等因素对轨道动检数据产生的干扰难以识别,人工分类效率低且易出现漏检与误检等问题,提出一种基于一维多通道特征融合的轨道动检数据分类算法,对高速铁路轨道动检数据的干扰因素进行智能识别与分类。该算法设计一种用于提取多通道一维数据特征的FE Block模块,引入通道注意力机制提高关键特征的学习效果。在自建高速铁路轨道动检数据干扰因素数据集上的实验结果表明,所提出的RA-Net模型在同时使用Dropout层以及通道注意力模块的情况下得到的网络效果最好,准确率、平均精度、平均召回率、平均F1分数指标均达到最优;该模型在五分类、二分类数据集上准确率分别达到98.86%、99.77%,优于同类方法。 展开更多
关键词 高速铁路 轨道动检数据 干扰因素 深度学习 智能分类
在线阅读 下载PDF
ADS-B Anomaly Data Detection Model Based on Deep Learning and Difference of Gaussian Approach 被引量:6
3
作者 WANG Ershen SONG Yuanshang +5 位作者 XU Song GUO Jing HONG Chen QU Pingping PANG Tao ZHANG Jiantong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期550-561,共12页
Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for position... Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for positioning of general aviation aircraft.Aim to acquire the accurate position information of aircraft and detect anomaly data,the ADS-B anomaly data detection model based on deep learning and difference of Gaussian(DoG)approach is proposed.First,according to the characteristic of ADS-B data,the ADS-B position data are transformed into the coordinate system.And the origin of the coordinate system is set up as the take-off point.Then,based on the kinematic principle,the ADS-B anomaly data can be removed.Moreover,the details of the ADS-B position data can be got by the DoG approach.Finally,the long short-term memory(LSTM)neural network is used to optimize the recurrent neural network(RNN)with severe gradient reduction for processing ADS-B data.The position data of ADS-B are reconstructed by the sequence to sequence(seq2seq)model which is composed of LSTM neural network,and the reconstruction error is used to detect the anomalous data.Based on the real flight data of general aviation aircraft,the simulation results show that the anomaly data can be detected effectively by the proposed method of reconstructing ADS-B data with the seq2seq model,and its running time is reduced.Compared with the RNN,the accuracy of anomaly detection is increased by 2.7%.The performance of the proposed model is better than that of the traditional anomaly detection models. 展开更多
关键词 general aviation aircraft automatic dependent surveillance-broadcast(ADS-B) anomaly data detection deep learning difference of Gaussian(DoG) long short-term memory(LSTM)
在线阅读 下载PDF
Anomalous Cell Detection with Kernel Density-Based Local Outlier Factor 被引量:2
4
作者 Miao Dandan Qin Xiaowei Wang Weidong 《China Communications》 SCIE CSCD 2015年第9期64-75,共12页
Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical ... Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical methods for anomalous cell detection cannot adapt to the evolution of networks, and data mining becomes the mainstream. In this paper, we propose a novel kernel density-based local outlier factor(KLOF) to assign a degree of being an outlier to each object. Firstly, the notion of KLOF is introduced, which captures exactly the relative degree of isolation. Then, by analyzing its properties, including the tightness of upper and lower bounds, sensitivity of density perturbation, we find that KLOF is much greater than 1 for outliers. Lastly, KLOFis applied on a real-world dataset to detect anomalous cells with abnormal key performance indicators(KPIs) to verify its reliability. The experiment shows that KLOF can find outliers efficiently. It can be a guideline for the operators to perform faster and more efficient trouble shooting. 展开更多
关键词 data mining key performance indicators kernel density-based local outlier factor density perturbation anomalous cell detection
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部