Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b...Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.展开更多
A numerical code called RFPA-Dynamics was used to study the rockburst mechanism under dynamic load based on coupled static-dynamic analysis.The results show that dynamic disturbance has a very distinct triggering effe...A numerical code called RFPA-Dynamics was used to study the rockburst mechanism under dynamic load based on coupled static-dynamic analysis.The results show that dynamic disturbance has a very distinct triggering effect on rockburst.Under the dynamic load,rockburst is motivated by tensile stress formed by the overlapping of dynamic waves in the form of instantaneous open and cutting through of cracks in weak planes and pre-damaged areas.Meanwhile,the orientation of joint sets has an obvious leading effect on rockburst locations.Finally,a higher initial static stress state before dynamic loading can cause more pre-damaged area,thus leading to a larger rockburst scope.展开更多
The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the ...The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the rotation of the turbine is determined by the dynamic interaction between the fluctuating wind and turbine. A weak coupling method is developed to simulate the dynamic interaction between the fluctuating wind and passive rotation turbine, and the results show that if the fluctuating wind with appropriate fluctuation amplitude and frequency, the self-starting aerodynamic characteristics of VAWT will be enhanced. It is also found that compared with the fluctuation amplitude, the fluctuation frequency of the variation in wind velocity is shown to have a minor effect on the performance of the turbine. The analysis will provide straightforward physical insight into the self-starting aerodynamic characteristics of VAWT under fluctuating wind.展开更多
To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as hea...To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as heat source, and it is coupled to the IC engine cooling system. After various kinds of organic working media were compared, R124 was selected as the ORC working medium. According to IC engine operating conditions and coolant energy characteristics, the major parameters of ORC system were preliminary designed. Then, the effects of various parameters on cycle performance and recovery potential of coolant energy were analyzed via cycle process calculation. The results indicate that cycle efficiency is mainly influenced by the working pressure of ORC, while the maximum working pressure is limited by IC engine coolant temperature. At the same working pressure, cycle efficiency is hardly affected by both the mass flow rate and temperature of working medium. When the bottom cycle working pressure arrives at the maximum allowable value of 1.6 MPa, the fuel utilization efficiency of IC engine could be improved by 12.1%.All these demonstrate that this low-temperature ORC is a useful energy-saving technology for IC engine.展开更多
Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing me...Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing mechanism of fluid structure interaction between circulation valve and liquid of hydraulic shock absorber. The fluid mesh distortion was controlled by the CEL language, and the fluid struc^tre interaction mathematical model was established. The finite element model was established by ANSYS CFX software and was analyzed by dynamic mesh technique. The local sensitive computational area was meshed by prismatic grid, which could reduce the negative volume problem during the simulation. The circulation valve and liquid of hydraulic shock absorber were simulated and analyzed under the condition of sinusoidal inlet velocity loads. Flow characteristic and dynamics characteristic were obtained. The pressure distribution and the displacement of circulation value were obtained, and the acceleration curve of circulation valve was simulated and analyzed. The conformity of the final simulation results with the experimental datum indicates that this method is accurate and reliable to analyze the dynamics characteristic between circulation valve and liquid of hydraulic shock absorber, which can provide a theoretical foundation for optimizing hydraulic shock absorber in the future.展开更多
To improve the energy utilization efficiency of internal combustion (IC) engine, exergy analysis was conducted on a passenger car gasoline engine. According to the thermodynamic theory of IC engine, in-cylinder exer...To improve the energy utilization efficiency of internal combustion (IC) engine, exergy analysis was conducted on a passenger car gasoline engine. According to the thermodynamic theory of IC engine, in-cylinder exergy balance model was built. The working processes of gasoline engine were simulated by using the GT-power. In this way, the required parameters were calculated and then gasoline engine exergy balance was obtained by programming on computer. On this basis, the influences of various parameters on exergy balance were analyzed. Results show that, the proportions of various forms of exergy in gasoline engine from high to low are irreversible loss, effective work, exhaust gas exergy and heat transfer exergy. Effective exergy proportion fluctuates with cylinder volumetric efficiency at full load, while it always increases with break mean effective pressure (BMEP) at part load. Exhaust gas exergy proportion is more sensitive to speed, and it increases with speed increasing except at the highest speed. The lower proportion of heat transfer exergy appears at high speed and high load. Irreversible loss is mainly influenced by load. At part load, higher BMEP results in lower proportion of irreversible loss; at full load, the proportion of irreversible loss changes little except at the highest speed.展开更多
基金Project(2023YFB4302500)supported by the National Key R&D Program of ChinaProject(52078485)supported by the National Natural Science Foundation of ChinaProjects(2021-Major-16,2021-Special-08)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.
基金Project(90401004)supported by the Fundamental Research Funds for the Central Universities of ChinaProjects(20100471465,201104572)supported by China Postdoctoral Science Foundation+1 种基金Project(20091029)supported by Postdoctoral Science Foundation of Liaoning Province,ChinaProjects(50934006,51111130206)supported by the National Natural Science Foundation of China
文摘A numerical code called RFPA-Dynamics was used to study the rockburst mechanism under dynamic load based on coupled static-dynamic analysis.The results show that dynamic disturbance has a very distinct triggering effect on rockburst.Under the dynamic load,rockburst is motivated by tensile stress formed by the overlapping of dynamic waves in the form of instantaneous open and cutting through of cracks in weak planes and pre-damaged areas.Meanwhile,the orientation of joint sets has an obvious leading effect on rockburst locations.Finally,a higher initial static stress state before dynamic loading can cause more pre-damaged area,thus leading to a larger rockburst scope.
基金Projects(61105086,51505347)supported by the National Natural Science Foundation of China
文摘The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the rotation of the turbine is determined by the dynamic interaction between the fluctuating wind and turbine. A weak coupling method is developed to simulate the dynamic interaction between the fluctuating wind and passive rotation turbine, and the results show that if the fluctuating wind with appropriate fluctuation amplitude and frequency, the self-starting aerodynamic characteristics of VAWT will be enhanced. It is also found that compared with the fluctuation amplitude, the fluctuation frequency of the variation in wind velocity is shown to have a minor effect on the performance of the turbine. The analysis will provide straightforward physical insight into the self-starting aerodynamic characteristics of VAWT under fluctuating wind.
基金Project(2011CB707201)supported by the National Basic Research Program of ChinaProject(51376057)supported by the National Natural Science Foundation of China
文摘To promote the fuel utilization efficiency of IC engine, an approach was proposed for IC engine coolant energy recovery based on low-temperature organic Rankine cycle(ORC). The ORC system uses IC engine coolant as heat source, and it is coupled to the IC engine cooling system. After various kinds of organic working media were compared, R124 was selected as the ORC working medium. According to IC engine operating conditions and coolant energy characteristics, the major parameters of ORC system were preliminary designed. Then, the effects of various parameters on cycle performance and recovery potential of coolant energy were analyzed via cycle process calculation. The results indicate that cycle efficiency is mainly influenced by the working pressure of ORC, while the maximum working pressure is limited by IC engine coolant temperature. At the same working pressure, cycle efficiency is hardly affected by both the mass flow rate and temperature of working medium. When the bottom cycle working pressure arrives at the maximum allowable value of 1.6 MPa, the fuel utilization efficiency of IC engine could be improved by 12.1%.All these demonstrate that this low-temperature ORC is a useful energy-saving technology for IC engine.
基金Project(51275542) supported by the National Natural Science Foundation of Chinaproject(CDJXS12110010) supported by the Fundamental Research Funds for the Central Universities of China
文摘Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing mechanism of fluid structure interaction between circulation valve and liquid of hydraulic shock absorber. The fluid mesh distortion was controlled by the CEL language, and the fluid struc^tre interaction mathematical model was established. The finite element model was established by ANSYS CFX software and was analyzed by dynamic mesh technique. The local sensitive computational area was meshed by prismatic grid, which could reduce the negative volume problem during the simulation. The circulation valve and liquid of hydraulic shock absorber were simulated and analyzed under the condition of sinusoidal inlet velocity loads. Flow characteristic and dynamics characteristic were obtained. The pressure distribution and the displacement of circulation value were obtained, and the acceleration curve of circulation valve was simulated and analyzed. The conformity of the final simulation results with the experimental datum indicates that this method is accurate and reliable to analyze the dynamics characteristic between circulation valve and liquid of hydraulic shock absorber, which can provide a theoretical foundation for optimizing hydraulic shock absorber in the future.
基金Foundation item: Project(2011CB707201) supported by the National Basic Research Program of China Project(10JJ5058) supported by the Natural Science Foundation of Hunan Province, China
文摘To improve the energy utilization efficiency of internal combustion (IC) engine, exergy analysis was conducted on a passenger car gasoline engine. According to the thermodynamic theory of IC engine, in-cylinder exergy balance model was built. The working processes of gasoline engine were simulated by using the GT-power. In this way, the required parameters were calculated and then gasoline engine exergy balance was obtained by programming on computer. On this basis, the influences of various parameters on exergy balance were analyzed. Results show that, the proportions of various forms of exergy in gasoline engine from high to low are irreversible loss, effective work, exhaust gas exergy and heat transfer exergy. Effective exergy proportion fluctuates with cylinder volumetric efficiency at full load, while it always increases with break mean effective pressure (BMEP) at part load. Exhaust gas exergy proportion is more sensitive to speed, and it increases with speed increasing except at the highest speed. The lower proportion of heat transfer exergy appears at high speed and high load. Irreversible loss is mainly influenced by load. At part load, higher BMEP results in lower proportion of irreversible loss; at full load, the proportion of irreversible loss changes little except at the highest speed.