现有对双馈风电机组低电压穿越(low voltage ride through,LVRT)的研究中,主要的LVRT措施为投入撬棒保护电路,但该措施较为单一和被动,并且风机还需要吸收一定的无功,因此风机系统难以取得良好的LVRT性能。针对这一问题,提出一种含线性...现有对双馈风电机组低电压穿越(low voltage ride through,LVRT)的研究中,主要的LVRT措施为投入撬棒保护电路,但该措施较为单一和被动,并且风机还需要吸收一定的无功,因此风机系统难以取得良好的LVRT性能。针对这一问题,提出一种含线性自抗扰控制(linear active disturbance rejection control,LADRC)的定、转子侧协同LVRT策略。定子侧采用串联动态阻抗以抑制转子电流升高;网侧变流器采用LADRC提高直流侧母线电压的抗扰能力,并为转子侧变流器附加控制策略创造良好的工作条件。针对不同程度的电压跌落,转子侧变流器分别采用无功补偿和磁链主动衰减的控制策略以优化LVRT期间的无功输出能力。在考虑相位跳变的基础上,分析了采用LADRC以及定、转子侧协同LVRT策略下的双馈风机短路特性,并对短路电流进行了解析。最后,通过仿真验证了该协同LVRT策略的有效性以及短路电流解析式的正确性。展开更多
为了提高动态电压恢复器(dynamic voltage restorer,DVR)系统的动态性能和鲁棒性,根据自抗扰控制器(ADRC)的原理设计了DVR自抗扰控制方案。自抗扰控制器的设计不需要精确的DVR参数和数学模型,将电网电压和负载电流视为系统的未知干扰,...为了提高动态电压恢复器(dynamic voltage restorer,DVR)系统的动态性能和鲁棒性,根据自抗扰控制器(ADRC)的原理设计了DVR自抗扰控制方案。自抗扰控制器的设计不需要精确的DVR参数和数学模型,将电网电压和负载电流视为系统的未知干扰,用扩张状态观测器对未知扰动进行观测,然后利用非线性反馈控制律进行补偿,使系统的控制律今与系统的给定输入和输出有关,减少了控制过程中的检测量,将复杂的控制过程加以简化。仿真和实验表明,自抗扰控制器对系统模型的不确定性和外扰具有较强的适应性和鲁棒性,控制系统具有优良的动态性能。展开更多
文摘现有对双馈风电机组低电压穿越(low voltage ride through,LVRT)的研究中,主要的LVRT措施为投入撬棒保护电路,但该措施较为单一和被动,并且风机还需要吸收一定的无功,因此风机系统难以取得良好的LVRT性能。针对这一问题,提出一种含线性自抗扰控制(linear active disturbance rejection control,LADRC)的定、转子侧协同LVRT策略。定子侧采用串联动态阻抗以抑制转子电流升高;网侧变流器采用LADRC提高直流侧母线电压的抗扰能力,并为转子侧变流器附加控制策略创造良好的工作条件。针对不同程度的电压跌落,转子侧变流器分别采用无功补偿和磁链主动衰减的控制策略以优化LVRT期间的无功输出能力。在考虑相位跳变的基础上,分析了采用LADRC以及定、转子侧协同LVRT策略下的双馈风机短路特性,并对短路电流进行了解析。最后,通过仿真验证了该协同LVRT策略的有效性以及短路电流解析式的正确性。
文摘为了提高动态电压恢复器(dynamic voltage restorer,DVR)系统的动态性能和鲁棒性,根据自抗扰控制器(ADRC)的原理设计了DVR自抗扰控制方案。自抗扰控制器的设计不需要精确的DVR参数和数学模型,将电网电压和负载电流视为系统的未知干扰,用扩张状态观测器对未知扰动进行观测,然后利用非线性反馈控制律进行补偿,使系统的控制律今与系统的给定输入和输出有关,减少了控制过程中的检测量,将复杂的控制过程加以简化。仿真和实验表明,自抗扰控制器对系统模型的不确定性和外扰具有较强的适应性和鲁棒性,控制系统具有优良的动态性能。