This paper develops delay-independent fuzzy hyperbolic guaranteed cost control for nonlinear continuous-time systems with parameter uncertainties. Fuzzy hyperbolic model (FHM) can be used to establish the model for ce...This paper develops delay-independent fuzzy hyperbolic guaranteed cost control for nonlinear continuous-time systems with parameter uncertainties. Fuzzy hyperbolic model (FHM) can be used to establish the model for certain unknown complex system. The main advantage of using FHM over Takagi-Sugeno (T-S) fuzzy model is that no premise structure identification is needed and no completeness design of premise variables space is needed. In addition, an FHM is not only a kind of valid global description but also a kind of nonlinear model in nature. A nonlinear quadratic cost function is developed as a performance measurement of the closed-loop fuzzy system based on FHM.Based on delay-independent Lyapunov functional approach, some sufficient conditions for the existence of such a fuzzy hyperbolic guaranteed cost controller via state feedback are provided. These conditions are given in terms of the feasibility of linear matrix inequalities (LMIs). A simulation example is provided to illustrate the design procedure of the proposed method.展开更多
基金Supported by the National Natural Science Foundation of China(61174094,60904064)Specialized Research Fund for the Doctoral Program of Higher Education(20090031110029)the Program for New Century Excellent Talents in University of China(NCET-10-0506)
文摘This paper develops delay-independent fuzzy hyperbolic guaranteed cost control for nonlinear continuous-time systems with parameter uncertainties. Fuzzy hyperbolic model (FHM) can be used to establish the model for certain unknown complex system. The main advantage of using FHM over Takagi-Sugeno (T-S) fuzzy model is that no premise structure identification is needed and no completeness design of premise variables space is needed. In addition, an FHM is not only a kind of valid global description but also a kind of nonlinear model in nature. A nonlinear quadratic cost function is developed as a performance measurement of the closed-loop fuzzy system based on FHM.Based on delay-independent Lyapunov functional approach, some sufficient conditions for the existence of such a fuzzy hyperbolic guaranteed cost controller via state feedback are provided. These conditions are given in terms of the feasibility of linear matrix inequalities (LMIs). A simulation example is provided to illustrate the design procedure of the proposed method.