期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
空间4-UPS/RPS并联机构动态静力分析 被引量:3
1
作者 陈修龙 王涛 +1 位作者 梁小夏 王清 《农业机械学报》 EI CAS CSCD 北大核心 2016年第7期398-406,共9页
为了对空间4-UPS-RPS五自由度并联机构进行受力分析,采用达朗贝尔原理建立了并联机构的动态静力学方程,进而对机构受力情况进行了分析。首先,推导出了4-UPS-RPS并联机构的位置反解、速度反解和加速度反解的表达式;然后,应用达朗贝尔原... 为了对空间4-UPS-RPS五自由度并联机构进行受力分析,采用达朗贝尔原理建立了并联机构的动态静力学方程,进而对机构受力情况进行了分析。首先,推导出了4-UPS-RPS并联机构的位置反解、速度反解和加速度反解的表达式;然后,应用达朗贝尔原理建立了4-UPS-RPS并联机构的动态静力学方程,导出了机构中5个驱动力;最后,分别利用Matlab理论计算与ADAMS虚拟样机仿真得到机构驱动杆的驱动力和动平台上球面副约束反力的变化曲线,验证了所建动态静力学模型的正确性。研究不仅为4-UPS-RPS并联机构驱动力和运动副反力的求解和结构设计提供了理论依据,也为其他空间并联机构的受力分析提供了可行的方法。 展开更多
关键词 并联机构 受力分析 动态静力学模型 达朗贝尔原理
在线阅读 下载PDF
Static-deformation based fault diagnosis for damping spring of large vibrating screen 被引量:7
2
作者 彭利平 刘初升 +1 位作者 李珺 王宏 《Journal of Central South University》 SCIE EI CAS 2014年第4期1313-1321,共9页
Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the st... Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS. 展开更多
关键词 static deformation suspended mass method large vibrating screen damping spring fault diagnosis
在线阅读 下载PDF
Elastodynamic modeling and joint reaction prediction for 3-PRS PKM 被引量:4
3
作者 张俊 赵艳芹 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期2971-2979,共9页
To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used a... To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used as a case study to illustrate the process of joint reaction analysis. The substructure synthesis method is applied to deriving an analytical elastodynamic model for the 3-PRS PKM device, in which the compliances of limbs and joints are considered. Each limb assembly is modeled as a spatial beam with non-uniform cross-section supported by lumped virtual springs at the centers of revolute and spherical joints. By introducing the deformation compatibility conditions between the limbs and the platform, the governing equations of motion of the system are obtained. After degenerating the governing equations into quasi-static equations, the effects of the gravity on system deflections and joint reactions are investigated with the purpose of providing useful information for the kinematic calibration and component strength calculations as well as structural optimizations of the 3-PRS PKM module. The simulation results indicate that the elastic deformation of the moving platform in the direction of gravity caused by gravity is quite large and cannot be ignored. Meanwhile, the distributions of joint reactions are axisymmetric and position-dependent. It is worthy to note that the proposed elastodynamic modeling method combines the benefits of accuracy of finite element method and concision of analytical method so that it can be used to predict the stiffness characteristics and joint reactions of a PKM throughout its entire workspace in a quick and accurate manner. Moreover, the present model can also be easily applied to evaluating the overall rigidity performance as well as statics of other PKMs with high efficiency after minor modifications. 展开更多
关键词 parallelkinematic machine (PKM) 3-PRS PKM Sprint Z3 head elastodynamic modeling joint reaction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部