期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
FPGA平台上动态硬件重构的Winograd神经网络加速器 被引量:1
1
作者 梅冰笑 滕文彬 +3 位作者 张弛 王文浩 李富强 苑福利 《计算机工程与应用》 CSCD 北大核心 2024年第22期323-334,共12页
为解决卷积神经网络在FPGA平台上进行硬件加速时存在的资源利用率低和资源受限问题,提出了一种基于FPGA动态部分重构技术和Winograd快速卷积的卷积神经网络加速器。该加速器通过运行时硬件重构对FPGA片上资源进行时分复用,采用流水线方... 为解决卷积神经网络在FPGA平台上进行硬件加速时存在的资源利用率低和资源受限问题,提出了一种基于FPGA动态部分重构技术和Winograd快速卷积的卷积神经网络加速器。该加速器通过运行时硬件重构对FPGA片上资源进行时分复用,采用流水线方式动态地将各个计算流水段配置到FPGA,各个流水段所对应的卷积计算核心使用Winograd算法进行定制优化,以在解决资源受限问题的同时最大程度地提升计算资源利用效率。针对该加速器架构,进一步构建了组合优化模型,用于搜索在特定FPGA硬件平台上部署特定网络模型的最优并行策略,并使用遗传算法进行设计空间求解。基于Xilinx VC709 FPGA平台对VGG-16网络模型进行部署和分析,综合仿真结果表明,所提出的设计方法能够在资源有限的FPGA上自适应地实现大型神经网络模型,加速器整体性能可以达到1078.3 GOPS,较以往加速器的性能和计算资源利用效率可以分别提升2.2倍和3.62倍。 展开更多
关键词 卷积神经网络 动态部分硬件重构 现场可编程门阵列(FPGA) 硬件加速器 Winograd快速卷积
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部