期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
自校正集中式融合信息滤波器 被引量:3
1
作者 关学慧 邓自立 石莹 《科学技术与工程》 2010年第2期372-376,共5页
对于带未知噪声系统和不相关噪声的多传感器随机系统,将基于相关方法得到的噪声方差带入到集中式融合最有信息滤波器,提出自校正集中式融合信息滤波器。同基于Riccatia方程的集中式融合Kalman滤波器相比,它避免了计算高维矩阵的逆,从而... 对于带未知噪声系统和不相关噪声的多传感器随机系统,将基于相关方法得到的噪声方差带入到集中式融合最有信息滤波器,提出自校正集中式融合信息滤波器。同基于Riccatia方程的集中式融合Kalman滤波器相比,它避免了计算高维矩阵的逆,从而减少了计算负担。应用动态误差分析方法,证明了自校正集中式融合信息滤波器以概率1收敛于最优集中式融合信息滤波器,因而具有全局渐进最优性。一个带3传感器跟踪系统的实例说明其有效性。 展开更多
关键词 集中式融合 信息矩阵方程 自校正信息滤波器 相关方法 动态误差分析方法
在线阅读 下载PDF
含未知参数的自校正融合Kalman滤波器及其收敛性 被引量:13
2
作者 陶贵丽 邓自立 《自动化学报》 EI CSCD 北大核心 2012年第1期109-119,共11页
对于带未知模型参数和噪声方差的多传感器系统,基于分量按标量加权最优融合准则,提出了自校正解耦融合Kalman滤波器,并应用动态误差系统分析(Dynamic error system analysis,DESA)方法证明了它的收敛性.作为在信号处理中的应用,对带有... 对于带未知模型参数和噪声方差的多传感器系统,基于分量按标量加权最优融合准则,提出了自校正解耦融合Kalman滤波器,并应用动态误差系统分析(Dynamic error system analysis,DESA)方法证明了它的收敛性.作为在信号处理中的应用,对带有色和白色观测噪声的多传感器多维自回归(Autoregressive,AR)信号,分别提出了AR信号模型参数估计的多维和多重偏差补偿递推最小二乘(Bias compensated recursive least-squares,BCRLS)算法,证明了两种算法的等价性,并且用DESA方法证明了它们的收敛性.在此基础上提出了AR信号的自校正融合Kalman滤波器,它具有渐近最优性.仿真例子说明了其有效性. 展开更多
关键词 多传感器信息融合 自校正融合 偏差补偿最小二乘法 收敛性 动态误差系统分析方法 KALMAN滤波器
在线阅读 下载PDF
多变量偏差补偿递推最小二乘法及其收敛性 被引量:6
3
作者 邓自立 徐慧勤 张明波 《科学技术与工程》 2010年第2期360-365,共6页
对于带白色观测噪声的多变量自回归(AR)信号,提出了未知模型参数和噪声方差估计的偏差补偿递推最小二乘算法,用动态误差系统分析方法严格证明了所得到的模型参数和噪声方差估值是强一致的,即它们以概率1收敛于相应真实值。一个仿真例子... 对于带白色观测噪声的多变量自回归(AR)信号,提出了未知模型参数和噪声方差估计的偏差补偿递推最小二乘算法,用动态误差系统分析方法严格证明了所得到的模型参数和噪声方差估值是强一致的,即它们以概率1收敛于相应真实值。一个仿真例子说明了其有效性。 展开更多
关键词 多变量(AR)信号 参数估计 偏差补偿递推最小二乘法 收敛性 强一致性 动态误差系统分析方法
在线阅读 下载PDF
带未知模型参数的自校正集中式融合信息滤波器 被引量:1
4
作者 刘文强 陶贵丽 邓自立 《科学技术与工程》 2010年第33期8113-8118,共6页
对于带未知模型参数和噪声统计的多传感器系统,通过系统辨识方法,能够获得模型参数和噪声统计的在线估值,然后把它们代入到基于信息矩阵的最优集中式融合滤波器,得到自校正集中式融合Kalman滤波器。应用动态误差系统分析(DESA)方法,证... 对于带未知模型参数和噪声统计的多传感器系统,通过系统辨识方法,能够获得模型参数和噪声统计的在线估值,然后把它们代入到基于信息矩阵的最优集中式融合滤波器,得到自校正集中式融合Kalman滤波器。应用动态误差系统分析(DESA)方法,证明了自校正集中式融合Kalman滤波器收敛于最优集中式融合Kalman滤波器,因此它有渐近全局最优性。应用于信号处理的仿真例子说明了其有效性。 展开更多
关键词 多传感器信息融合 KALMAN滤波 噪声方差估计 收敛性 动态误差系统分析方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部