期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
sEMG多特征融合的自适应神经网络下肢运动意图识别研究 被引量:2
1
作者 刘瑞恒 张峻霞 钱芊橙 《现代电子技术》 2022年第7期33-40,共8页
针对表面肌电信号单一特征进行动作意图识别准确率低的问题,提出一种利用表面肌电信号多特征融合的动态自适应神经网络算法,实现8种下肢运动意图的准确识别。采集8种下肢动作的表面肌电信号,利用小波基函数对原始信号进行降噪处理,提取... 针对表面肌电信号单一特征进行动作意图识别准确率低的问题,提出一种利用表面肌电信号多特征融合的动态自适应神经网络算法,实现8种下肢运动意图的准确识别。采集8种下肢动作的表面肌电信号,利用小波基函数对原始信号进行降噪处理,提取时域、小波变换和样本熵的原始特征参数。对原始特征进行主成分分析,降低特征维度,使用改进的差分进化算法优化各个特征的权重值;针对传统BP神经网络梯度下降法收敛速度慢的问题,使用动态自适应学习率的神经网络算法代替传统BP神经网络识别方法,既提升了模型的收敛速度,又提高了运动意图识别的准确率。实验结果表明,采用多特征融合的自适应神经网络模型识别8种下肢运动意图,平均识别准确率达到94.89%,比单特征的BP神经网络方法识别准确率提高10%以上,动作的识别时间只需要280 ms。该方法在300 ms内可实现对下肢动作的识别,能够达到运动意图识别的要求。 展开更多
关键词 下肢运动意图识别 多特征融合 动态自适应神经网络 特征提取 下肢表面肌电信号 差分进化算法 小波分析 主成分分析
在线阅读 下载PDF
基于多通道融合多尺度自适应残差学习的行星齿轮箱故障诊断研究 被引量:2
2
作者 陈奇 陈长征 安文杰 《机电工程》 CAS 北大核心 2023年第7期1031-1038,共8页
针对风电机组行星齿轮箱振动激励源多、故障诊断精度低的问题,提出了一种基于多通道融合多尺度动态自适应残差学习(MC-MSDARL)的行星齿轮箱故障诊断方法。首先,采用多尺度动态自适应卷积神经网络(MSDAC)对不同尺度卷积核权重进行了动态... 针对风电机组行星齿轮箱振动激励源多、故障诊断精度低的问题,提出了一种基于多通道融合多尺度动态自适应残差学习(MC-MSDARL)的行星齿轮箱故障诊断方法。首先,采用多尺度动态自适应卷积神经网络(MSDAC)对不同尺度卷积核权重进行了动态调整,自适应提取了单通道数据的局部和全局特征;其次,通过将MSDAC与残差学习结合,提升了模型的学习能力;最后,采用MC-MSDAR将多通道数据的多尺度特征进行了融合,输入到SoftMax层,实现了故障识别与分类。研究结果表明:基于MC-MSDAR的方法进行行星齿轮箱故障诊断的准确率为97%,验证了该方法的有效性;通过与其他深度学习方法进行对比,该方法具有更好的泛化能力。 展开更多
关键词 故障诊断 风电机组 行星齿轮箱 残差学习 多尺度学习 多尺度动态自适应卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部