针对差分进化算法在应对多模态复杂优化问题时面临种群多样性丧失和过早收敛的缺陷,提出了一种基于自扰动和极性维度交互的自适应差分进化算法(Adaptive Differential Evolution Based on Self-guided Perturbation and Extreme Dimensi...针对差分进化算法在应对多模态复杂优化问题时面临种群多样性丧失和过早收敛的缺陷,提出了一种基于自扰动和极性维度交互的自适应差分进化算法(Adaptive Differential Evolution Based on Self-guided Perturbation and Extreme Dimension Exchange,APE-DE)。首先,设计了一种自扰动补偿策略,通过个体的空间位置来引导其搜索方向,有效避免了算法易陷入局部最优的困境。然后,提出了一种极性维度交互策略,用于提升算法多样性,一旦种群被检测出停滞,将启动相应的增强方案。最后,提出了一种自适应参数控制策略,通过小波基函数和适应度分布偏差信息实时捕捉种群适应度的变化,并据此动态调整算法参数。为了验证APE-DE的性能,在被广泛使用的IEEE CEC2017数据集上进行了实验,以验证算法面对多模态及复杂测试环境下的性能。实验结果表明,与8种最先进的差分进化变体相比,APE-DE在收敛精度和收敛速度方面均展现出了显著的优势。此外,为了评估APE-DE在解决现实问题中的有效性,将所提算法应用于光伏模型的参数识别问题。展开更多
为了应对动态环境经济调度(DEED)问题的高维性和大规模约束性,提出了一种自适应多目标差分进化算法(ADEA)。设计自适应差分交叉模块,提出改进的current to best/1交叉策略提高种群的多样性,有效地提高传统进化算法的探索与开采能力,提...为了应对动态环境经济调度(DEED)问题的高维性和大规模约束性,提出了一种自适应多目标差分进化算法(ADEA)。设计自适应差分交叉模块,提出改进的current to best/1交叉策略提高种群的多样性,有效地提高传统进化算法的探索与开采能力,提出一种修补策略处理功率平衡约束和爬坡率约束。为了验证该方法的有效性,数值仿真将ADEA应用于10机系统进行测试,并与同类算法展开比较,仿真结果表明ADEA具有较好的收敛能力,获得的Pareto前沿具有较好的均匀性和延展性,通过模糊决策获得的最好折中解能为电力系统调度人员提供较为合理的调度方案。展开更多
文摘针对差分进化算法在应对多模态复杂优化问题时面临种群多样性丧失和过早收敛的缺陷,提出了一种基于自扰动和极性维度交互的自适应差分进化算法(Adaptive Differential Evolution Based on Self-guided Perturbation and Extreme Dimension Exchange,APE-DE)。首先,设计了一种自扰动补偿策略,通过个体的空间位置来引导其搜索方向,有效避免了算法易陷入局部最优的困境。然后,提出了一种极性维度交互策略,用于提升算法多样性,一旦种群被检测出停滞,将启动相应的增强方案。最后,提出了一种自适应参数控制策略,通过小波基函数和适应度分布偏差信息实时捕捉种群适应度的变化,并据此动态调整算法参数。为了验证APE-DE的性能,在被广泛使用的IEEE CEC2017数据集上进行了实验,以验证算法面对多模态及复杂测试环境下的性能。实验结果表明,与8种最先进的差分进化变体相比,APE-DE在收敛精度和收敛速度方面均展现出了显著的优势。此外,为了评估APE-DE在解决现实问题中的有效性,将所提算法应用于光伏模型的参数识别问题。
文摘为了应对动态环境经济调度(DEED)问题的高维性和大规模约束性,提出了一种自适应多目标差分进化算法(ADEA)。设计自适应差分交叉模块,提出改进的current to best/1交叉策略提高种群的多样性,有效地提高传统进化算法的探索与开采能力,提出一种修补策略处理功率平衡约束和爬坡率约束。为了验证该方法的有效性,数值仿真将ADEA应用于10机系统进行测试,并与同类算法展开比较,仿真结果表明ADEA具有较好的收敛能力,获得的Pareto前沿具有较好的均匀性和延展性,通过模糊决策获得的最好折中解能为电力系统调度人员提供较为合理的调度方案。