期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
TGSOM:一种用于数据聚类的动态自组织映射神经网络 被引量:28
1
作者 王莉 王正欧 《电子与信息学报》 EI CSCD 北大核心 2003年第3期313-319,共7页
针对传统Kohonen自组织特征映射(SOFM)神经网络模型结构需预先指定的限制,提出一种新的树形动态自组织映射(TGSOM)神经网络,当用于数据挖掘时该网络以其生成速度快可视性好具有显著优越性。该文详尽描述了该网络模型的生成算法,研究了... 针对传统Kohonen自组织特征映射(SOFM)神经网络模型结构需预先指定的限制,提出一种新的树形动态自组织映射(TGSOM)神经网络,当用于数据挖掘时该网络以其生成速度快可视性好具有显著优越性。该文详尽描述了该网络模型的生成算法,研究了算法中扩展因子的作用。扩展因子与训练样本数据的维数无关,其作用是控制网络的生长,扩展因子可以反映数据聚类的精度,即扩展因子值的大小与聚类精度的高低成正比。在聚类的不同阶段使用大小不等的扩展因子还可以实现层次聚类。 展开更多
关键词 TGSOM 神经网络 数据聚类 数据挖掘 自组织特征映射 树形动态自组织映射
在线阅读 下载PDF
一种基于混合策略的失衡数据集分类方法 被引量:16
2
作者 李鹏 王晓龙 +1 位作者 刘远超 王宝勋 《电子学报》 EI CAS CSCD 北大核心 2007年第11期2161-2165,共5页
提出了一种有效应用于失衡数据集的分类方法,其核心思想是从样本预处理和分类器改进两方面入手,为失衡数据集的分类问题提供全面的解决方案.首先创造性地采用动态自组织映射聚类的方法对失衡数据集进行重采样,这种采样方法,有效地解决... 提出了一种有效应用于失衡数据集的分类方法,其核心思想是从样本预处理和分类器改进两方面入手,为失衡数据集的分类问题提供全面的解决方案.首先创造性地采用动态自组织映射聚类的方法对失衡数据集进行重采样,这种采样方法,有效地解决了传统重采样的方法随机性强,人为主观干扰以及信息损失等弊端.随后借助K-近邻规则的思想,对新采集的样本进行剪枝,有效地解决了实际存在的数据混叠现象.算法对SVM的核函数进行等角变换,由此对类边界进行了校准,以适应样本类别失衡的情况.通过对三种算法的对比实验证明了算法在失衡数据集分类上的有效性.本文的算法已经在答案抽取技术中得到了成功应用,并在TREC2006国际QA评测中得到了客观充分的验证. 展开更多
关键词 失衡数据集 分类 支持向量机 动态自组织映射 K-近邻
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部