期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
动态聚焦多维注意力遥感弱小目标检测
1
作者 张朝阳 张上 +2 位作者 胡益民 张岳 熊偌炎 《无线电通信技术》 北大核心 2025年第1期196-209,共14页
遥感图像的目标检测在各领域有着广泛的应用场景,由于遥感图像中检测目标存在形态多变、弱小目标较多以及背景复杂等原因,导致遥感图像在目标检测方面存在检测精度识别不高、模型参数过大等问题。为提升算法对遥感图像目标的检测准确率... 遥感图像的目标检测在各领域有着广泛的应用场景,由于遥感图像中检测目标存在形态多变、弱小目标较多以及背景复杂等原因,导致遥感图像在目标检测方面存在检测精度识别不高、模型参数过大等问题。为提升算法对遥感图像目标的检测准确率以及缩减算法模型量,提出了动态聚焦多维注意力检测算法——YOLO-WiseGOD。在YOLOv8n基线网络中使用WIoU(Wise-IoU)构建动态聚焦机制的边界框损失,弱化因几何因素导致的梯度增益泛化能力不足的问题,在协调高低质量锚框竞争力的同时,使之适用于聚焦普通锚框,提高网络模型检测的定位能力。在网络末端融合改进的L-ODConv(Leaky ReLU-Omni-Dimensional Dynamic Convolution)多维注意力机制,避免梯度锯齿问题,在减少模型参数的同时,优化输出特征和卷积权值的调制,提升网络加权特征融合。在主干网络中引入轻量化注意力模块C2FGhostV2,在更好地捕捉输入特征图中的多尺度特征和全局上下文信息的同时,保持较低的参数量和计算复杂度,更好地平衡训练精度和模型量之间的关系。所提算法在遥感数据集NWPU VHR-10(Northwestern Polytechnical University Very High Resolution-10)和RSOD(Remote Sensing Object Detection)上进行实验验证,对比当前主流算法模型YOLOv8n,其平均检测准确率(mean Average Precision,mAP)分别提高了2.0%和2.3%,模型参数量减少4.5%,计算量减少10.9%,能有效提高遥感图像中微小目标的检测精度和实现一定的模型轻量化。 展开更多
关键词 遥感图像 弱小目标检测 YOLOv8 动态聚焦机制 多维注意力
在线阅读 下载PDF
基于改进YOLOv8n的船舶设备拆装流程规范性评估方法
2
作者 张振东 管聪 +2 位作者 张泽辉 吴超 丁学文 《中国舰船研究》 北大核心 2025年第2期140-150,共11页
[目的]船舶机舱作业规范性是船舶安全管控的关键部分,因此船员实操考试将船舶设备拆装作为一个重要考核项。为提升船员实操考试的电子化和智能化水平,提出一种基于计算机视觉的船舶设备拆装流程规范性的自动化识别方法。[方法]首先,以YO... [目的]船舶机舱作业规范性是船舶安全管控的关键部分,因此船员实操考试将船舶设备拆装作为一个重要考核项。为提升船员实操考试的电子化和智能化水平,提出一种基于计算机视觉的船舶设备拆装流程规范性的自动化识别方法。[方法]首先,以YOLOv8n构建船舶设备检测模型的骨干网络,并引入高效通道注意力机制(SA),以提高模型特征提取能力与训练效率;然后,在颈部网络中引入重参数化泛化特征的金字塔网络(GFPN)融合结构,以提高模型的多尺度特征融合能力;最后,引入动态非单调聚焦机制损失函数(WIoU)来替换原CIoU损失函数,以提高模型精度。[结果]自建数据集的试验结果表明:与YOLOv8n相比,改进目标识别算法的平均精度均值提高了0.15,实时检测的每秒帧数提升了0.6,可以准确识别齿轮泵的拆装流程。[结论]该改进算法具有更强的识别能力,可以更好地应用于船舶设备拆装流程规范性的识别任务。 展开更多
关键词 船舶设备 拆除和安装 目标检测 注意力机制(SA) 泛化特征金字塔网络(GFPN) 动态非单调聚焦机制(WIoU)损失函数
在线阅读 下载PDF
面向数字孪生工厂的多模态仪表数据异常检测
3
作者 沈世贤 王建国 +1 位作者 冯勇 李英娜 《微电子学与计算机》 2025年第1期65-74,共10页
针对工业生产过程中数据异常监测成本高、准确率低、实时性差等问题,提出了一种面向数字孪生工厂的多模态仪表数据异常检测方法。首先,将动态非单调聚焦机制引入到YOLOv5s目标检测模型,通过改进后的模型检测指针式仪表所在位置;同时利... 针对工业生产过程中数据异常监测成本高、准确率低、实时性差等问题,提出了一种面向数字孪生工厂的多模态仪表数据异常检测方法。首先,将动态非单调聚焦机制引入到YOLOv5s目标检测模型,通过改进后的模型检测指针式仪表所在位置;同时利用仿射变换和透视变换对存在倾斜、旋转的图像进行校准。其次,将可变卷积引入ESPNet分割网络,以自适应性的捕获图像中指针和刻度盘非线性形变元素,从而提取完整的指针和刻度盘关键信息;然后进行霍夫变换操作拟合指针所在直线,同时利用轮廓跟踪方法提取刻度盘数据的有效范围,依据线性比例关系计算出指针式仪表示数。最后,将基于图像获取的仪表数据和相应的传感器数据进行综合建模,从多模态数据分析的角度检测异常。实验结果表明:该方法的指针式仪表识别准确率96.21%,检测速度平均耗时0.216 s,数据异常检测率99.43%,能够准确迅速的识别数据异常情况,满足工业生产中关键指标监控的需求。 展开更多
关键词 数字孪生 指针式仪表 动态非单调聚焦机制 ESPNet 异常检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部