期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
ResCalib:基于几何监督深度网络的激光雷达和相机动态联合标定
1
作者 柴家辉 李明磊 +2 位作者 李敏 魏大洲 陈广永 《雷达学报(中英文)》 北大核心 2025年第3期616-628,共13页
激光雷达缺乏纹理色彩信息,相机缺乏深度信息,激光雷达和相机的信息具有高度的互补性,融合二者能获得丰富的观测数据,能提高环境感知的精准度和稳定性。而对两类传感器的外部参数进行精确的联合标定是数据融合的前提。目前,绝大多数的... 激光雷达缺乏纹理色彩信息,相机缺乏深度信息,激光雷达和相机的信息具有高度的互补性,融合二者能获得丰富的观测数据,能提高环境感知的精准度和稳定性。而对两类传感器的外部参数进行精确的联合标定是数据融合的前提。目前,绝大多数的联合标定方法需要借助校准靶标物和人工选点的方式处理,导致其无法在动态的应用场景中使用。该文提出一种ResCalib深度神经网络模型用于解决激光雷达与相机的在线联合标定问题,该方法以激光雷达点云、单目图像和相机内参数矩阵作为输入以实现参数解算,而方法对外部特征物或靶标的依赖度低。ResCalib是一个几何监督深度神经网络,通过实施监督学习使输入图像和点云的几何及光度一致性最大化,利用单次迭代网络,自动估计激光雷达和相机之间的6自由度外参关系。实验表明该文方法能够纠正旋转±10°和平移±0.2 m的错误标定,标定解算结果的旋转分量的平均绝对误差为0.35°,平移分量为0.032 m,且单组标定所需时间为0.018 s,为实现动态环境下的自动化联合标定提供了技术支撑。 展开更多
关键词 激光雷达 异源融合 动态联合标定 ResCalib 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部