期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于堆栈降噪自动编码模型的动态纹理分类方法
被引量:
2
1
作者
汪彩霞
魏雪云
王彪
《现代电子技术》
北大核心
2015年第6期20-24,共5页
针对以往动态场景分类中需要手动提取动态特征描述符以及特征维数过高的问题,提出利用深度学习网络模型进行动态纹理特征的提取。首先利用慢特征分析法(SFA)预先学习每个视频序列的动态特征,将该特征作为深度学习网络模型的输入数据进...
针对以往动态场景分类中需要手动提取动态特征描述符以及特征维数过高的问题,提出利用深度学习网络模型进行动态纹理特征的提取。首先利用慢特征分析法(SFA)预先学习每个视频序列的动态特征,将该特征作为深度学习网络模型的输入数据进行学习,进一步得到信号的高级表示,深度网络模型选用堆栈降噪自动编码模型,最后用SVM分类法对其进行分类。实验证明该方法所提取的特征维数低,并且能够有效地表示动态纹理。
展开更多
关键词
动态纹理分类
慢特征分析
深度学习
堆栈降噪自动编码网络模型
在线阅读
下载PDF
职称材料
题名
基于堆栈降噪自动编码模型的动态纹理分类方法
被引量:
2
1
作者
汪彩霞
魏雪云
王彪
机构
江苏科技大学电子与信息学院
出处
《现代电子技术》
北大核心
2015年第6期20-24,共5页
基金
国家自然科学基金(11204109)
江苏省高校自然科学基金(12KJB510003)
文摘
针对以往动态场景分类中需要手动提取动态特征描述符以及特征维数过高的问题,提出利用深度学习网络模型进行动态纹理特征的提取。首先利用慢特征分析法(SFA)预先学习每个视频序列的动态特征,将该特征作为深度学习网络模型的输入数据进行学习,进一步得到信号的高级表示,深度网络模型选用堆栈降噪自动编码模型,最后用SVM分类法对其进行分类。实验证明该方法所提取的特征维数低,并且能够有效地表示动态纹理。
关键词
动态纹理分类
慢特征分析
深度学习
堆栈降噪自动编码网络模型
Keywords
dynamic texture classification
slow feature analysis
deep learning
stacked denoising autoencoding model
分类号
TN919-34 [电子电信—通信与信息系统]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于堆栈降噪自动编码模型的动态纹理分类方法
汪彩霞
魏雪云
王彪
《现代电子技术》
北大核心
2015
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部