水文模型结构不确定性是影响水文预报精度的重要因素,如何量化并降低其影响是当前的研究热点问题.基于动态系统响应曲线方法(dynamic system response curve,DSRC),假设水文模型系统的误差仅来源于模型结构误差,推导模型结构误差与输入...水文模型结构不确定性是影响水文预报精度的重要因素,如何量化并降低其影响是当前的研究热点问题.基于动态系统响应曲线方法(dynamic system response curve,DSRC),假设水文模型系统的误差仅来源于模型结构误差,推导模型结构误差与输入量的变化量之间的数学关系,结合经典概率论,提出了能够分辨模型结构不确定性来源的考虑模型结构不确定性的动态系统响应曲线校正方法(dynamic system response curve method considering the model structure uncertainty,UNDSRC).将该方法应用于大坡岭流域与富水流域检验UNDSRC方法的综合表现,并与DSRC方法进行比较.研究表明:1)在实际流域检验中,UNDSRC方法相较于DSRC方法具有更好的校正效果,校正效果评价系数分别为0.82与0.60;2)DSRC方法在2个实际流域均可以对新安江模型进行有效校正,且校正效果相似;3)UNDSRC方法校正效果优异且稳定,能够适应更复杂的流域下垫面情况,方法对洪峰流量的校正优于对径流深的校正;4)校正精度相同的情况下,UNDSRC方法相较于DSRC方法具有更小的岭系数.展开更多
Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling...Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling block is the achievement of adequate,accurate,quick and smooth movement under automatic control. Here,both classical and modern approaches are considered,including proportional-integral-derivative (PID) control tuned by conventional Zigler-Nichols rules,linear proportional-integral-plus (PIP) control,and a novel nonlinear PIP controller based on a state-dependent parameter (SDP) model structure,in which the parameters are functionally dependent on other variables in the system. Implementation results for the excavator joint arms control demonstrate that SDP-PIP controller provides the improved performance with fast,smooth and accurate response in comparison with both PID and linearized PIP control.展开更多
文摘水文模型结构不确定性是影响水文预报精度的重要因素,如何量化并降低其影响是当前的研究热点问题.基于动态系统响应曲线方法(dynamic system response curve,DSRC),假设水文模型系统的误差仅来源于模型结构误差,推导模型结构误差与输入量的变化量之间的数学关系,结合经典概率论,提出了能够分辨模型结构不确定性来源的考虑模型结构不确定性的动态系统响应曲线校正方法(dynamic system response curve method considering the model structure uncertainty,UNDSRC).将该方法应用于大坡岭流域与富水流域检验UNDSRC方法的综合表现,并与DSRC方法进行比较.研究表明:1)在实际流域检验中,UNDSRC方法相较于DSRC方法具有更好的校正效果,校正效果评价系数分别为0.82与0.60;2)DSRC方法在2个实际流域均可以对新安江模型进行有效校正,且校正效果相似;3)UNDSRC方法校正效果优异且稳定,能够适应更复杂的流域下垫面情况,方法对洪峰流量的校正优于对径流深的校正;4)校正精度相同的情况下,UNDSRC方法相较于DSRC方法具有更小的岭系数.
基金Work supported by the Lancaster University,UK and Jiangsu Provincial Laboratory of Advanced Robotics,SooChow University,ChinaProject(BK2009509) supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(K5117827) supported by the Scientific Research Foundation for the Returned Scholars,Ministry of Education of ChinaProject(Q3117918) supported by the Scientific Research Foundation for Young Teachers of Soochow University,China
文摘Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling block is the achievement of adequate,accurate,quick and smooth movement under automatic control. Here,both classical and modern approaches are considered,including proportional-integral-derivative (PID) control tuned by conventional Zigler-Nichols rules,linear proportional-integral-plus (PIP) control,and a novel nonlinear PIP controller based on a state-dependent parameter (SDP) model structure,in which the parameters are functionally dependent on other variables in the system. Implementation results for the excavator joint arms control demonstrate that SDP-PIP controller provides the improved performance with fast,smooth and accurate response in comparison with both PID and linearized PIP control.