期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
动态改变惯性权重的自适应粒子群算法 被引量:10
1
作者 邓爱萍 王会芳 《计算机工程与设计》 CSCD 北大核心 2010年第13期3062-3065,共4页
惯性权重是平衡粒子群算法中平衡全局搜索能力与局部搜索能力的重要参数。为实现快速收敛与并避免陷入局部最优,分析了PSO算法中的惯性权重与种群规模、粒子适应度以及搜索空间维度这三者的关系,并把粒子惯性权重定义为这三者的函数以改... 惯性权重是平衡粒子群算法中平衡全局搜索能力与局部搜索能力的重要参数。为实现快速收敛与并避免陷入局部最优,分析了PSO算法中的惯性权重与种群规模、粒子适应度以及搜索空间维度这三者的关系,并把粒子惯性权重定义为这三者的函数以改进PSO算法。该算法在每次迭代后根据此函数更新每个粒子的惯性权重,实现了自适应调整全局搜索能力与局部搜索能力,并结合动态管理种群的策略提出了改进的粒子群算法。通过在多个常用测试函数上与已有惯性权重调整算法测试比较,证明新算法具有较强的全局寻优能力与较高的搜索效率。 展开更多
关键词 粒子群算法 自适应惯性权重 种群规模 搜索空间维度 粒子适应度 动态管理种群
在线阅读 下载PDF
基于半监督学习的K-均值聚类算法研究 被引量:12
2
作者 刘涛 尹红健 《计算机应用研究》 CSCD 北大核心 2010年第3期913-916,共4页
定义了一个欧氏距离和监督信息相混合的新的最近邻计算函数,从而将K-均值算法很好地应用于半监督聚类问题。针对K-均值算法初始质心敏感的缺陷,用粒子群算法的搜索空间模拟聚类的欧氏空间,迭代搜索找到较优的聚类质心,同时提出动态管理... 定义了一个欧氏距离和监督信息相混合的新的最近邻计算函数,从而将K-均值算法很好地应用于半监督聚类问题。针对K-均值算法初始质心敏感的缺陷,用粒子群算法的搜索空间模拟聚类的欧氏空间,迭代搜索找到较优的聚类质心,同时提出动态管理种群的策略以提高粒子群算法搜索效率。算法在UCI的多个数据集上测试都得到了较好的聚类准确率。 展开更多
关键词 半监督聚类 改进的K-均值算法 动态管理种群的粒子群算法
在线阅读 下载PDF
一种自适应惯性权重的粒子群优化算法 被引量:7
3
作者 郭长友 《计算机应用与软件》 CSCD 2011年第6期289-292,共4页
为较好平衡粒子群算法中全局搜索能力与局部搜索能力,分析了PSO(Particle Swarm Optimization)算法中的惯性权重与种群规模、粒子适应度以及搜索空间维度的关系,并把粒子惯性权重定义为这三者的函数。通过在每次迭代后更新每个粒子的惯... 为较好平衡粒子群算法中全局搜索能力与局部搜索能力,分析了PSO(Particle Swarm Optimization)算法中的惯性权重与种群规模、粒子适应度以及搜索空间维度的关系,并把粒子惯性权重定义为这三者的函数。通过在每次迭代后更新每个粒子的惯性权重,实现了自适应调整全局搜索能力与局部搜索能力,并结合动态管理种群的策略提出了改进的粒子群算法。通过在多个常用测试函数上与已有惯性权重调整算法测试比较,证明新算法具有较强的全局寻优能力与较高的搜索效率。 展开更多
关键词 粒子群算法 自适应惯性权重 种群规模 搜索空间维度 粒子适应度 动态管理种群
在线阅读 下载PDF
基于粒子群算法的K均值半监督聚类算法研究 被引量:1
4
作者 郭长友 《计算机应用与软件》 CSCD 2010年第7期270-273,共4页
定义了一个欧氏距离和监督信息相结合的最近邻计算函数,综合考虑无监督学习的空间距离和监督学习的标签数据的影响,从而将K均值算法很好地用于半监督聚类问题;针对K均值算法对初始质心敏感的缺陷,用粒子群算法的搜索空间模拟聚类的欧氏... 定义了一个欧氏距离和监督信息相结合的最近邻计算函数,综合考虑无监督学习的空间距离和监督学习的标签数据的影响,从而将K均值算法很好地用于半监督聚类问题;针对K均值算法对初始质心敏感的缺陷,用粒子群算法的搜索空间模拟聚类的欧氏空间,通过迭代搜索找到较优的聚类质心。同时提出动态管理种群的策略以提高粒子群算法搜索效率。新算法在UC I的多个数据集上测试都得到了较好的聚类准确率。 展开更多
关键词 半监督聚类 改进的K均值算法 质心优化 粒子群算法 动态管理种群
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部