稀疏和随机动态变化是实际无线传感器网络(wireless sensor network,WSN)中普遍共同存在的两种通信拓扑不稳定因素,使基于一致性算法的分布式无迹信息滤波(distributed unscented information filter,DUIF)算法适用于稀疏动态WSN,将极...稀疏和随机动态变化是实际无线传感器网络(wireless sensor network,WSN)中普遍共同存在的两种通信拓扑不稳定因素,使基于一致性算法的分布式无迹信息滤波(distributed unscented information filter,DUIF)算法适用于稀疏动态WSN,将极大提高其实用性.为此,本文提出一种并行融合DUIF(parallel fusion DUIF,PF–DUIF)算法.在PF–DUIF算法中,通过将实时局部后验估计均值和协方差用于局部无迹信息滤波器(local unscented information filter,LUIF)的Sigma点采样,使LUIF和加权平均一致性滤波器(weighted average consensus filter,WACF)得以并行运行,从而有效抵制由通信拓扑随机动态变化带来的较大一致跟踪误差的困扰;同时,WACF通过对LUIF输出的无偏局部信息矩阵和向量分别进行平均一致性滤波,最终得到不包含由稀疏通信拓扑引起的平均一致误差的分布式后验估计结果;进而,建立即时更新机制有效抑制随机动态通信拓扑引起的PF–DUIF算法滤波异步问题,同时,基于稀疏动态WSN的平均网络模型,在通信能量消耗受限条件下优化WACF均方收敛速率,从而提高PF–DUIF算法的整体滤波效率.仿真实验结果表明,PF–DUIF算法能够有效应用于稀疏动态WSN机动目标跟踪.展开更多
针对卷积神经网络模型巨大的参数量和计算量导致其实际应用时难度较大的问题,提出了一种基于注意力机制与动态稀疏约束的模型压缩方法。该算法首先借助SENet(Squeeze and excitation networks,SENet)模块(可称为SE模块)评估出网络中各...针对卷积神经网络模型巨大的参数量和计算量导致其实际应用时难度较大的问题,提出了一种基于注意力机制与动态稀疏约束的模型压缩方法。该算法首先借助SENet(Squeeze and excitation networks,SENet)模块(可称为SE模块)评估出网络中各个通道的重要性,并施加稀疏正则化;然后提出一种网络稀疏度的自适应惩罚权重设计方法,根据模型学习效果,动态调整权重,将其添加到最终的训练目标上,实现模型动态压缩。最后,通过实验验证所提出的模型压缩方法,在经典的多分类数据集CIFAR 10上进行实验,证明了本文所提出的基于注意力机制与动态稀疏约束的模型压缩方法可降低网络的冗余度,使网络模型参数量减少43.97%,计算量减少82.94%,而分类准确率只比原始VGG16模型下降0.04个百分点。随后又将提出的模型压缩方法应用到杂草检测任务中,在甜菜与杂草数据集上进行实验,实验结果表明,剪枝模型相较于未剪枝模型的模型参数量减少41.26%,计算量减少45.77%,而平均检测精度均值只减少0.91个百分点,证明了该方法在杂草检测方面效果较好。展开更多
文摘稀疏和随机动态变化是实际无线传感器网络(wireless sensor network,WSN)中普遍共同存在的两种通信拓扑不稳定因素,使基于一致性算法的分布式无迹信息滤波(distributed unscented information filter,DUIF)算法适用于稀疏动态WSN,将极大提高其实用性.为此,本文提出一种并行融合DUIF(parallel fusion DUIF,PF–DUIF)算法.在PF–DUIF算法中,通过将实时局部后验估计均值和协方差用于局部无迹信息滤波器(local unscented information filter,LUIF)的Sigma点采样,使LUIF和加权平均一致性滤波器(weighted average consensus filter,WACF)得以并行运行,从而有效抵制由通信拓扑随机动态变化带来的较大一致跟踪误差的困扰;同时,WACF通过对LUIF输出的无偏局部信息矩阵和向量分别进行平均一致性滤波,最终得到不包含由稀疏通信拓扑引起的平均一致误差的分布式后验估计结果;进而,建立即时更新机制有效抑制随机动态通信拓扑引起的PF–DUIF算法滤波异步问题,同时,基于稀疏动态WSN的平均网络模型,在通信能量消耗受限条件下优化WACF均方收敛速率,从而提高PF–DUIF算法的整体滤波效率.仿真实验结果表明,PF–DUIF算法能够有效应用于稀疏动态WSN机动目标跟踪.
文摘针对卷积神经网络模型巨大的参数量和计算量导致其实际应用时难度较大的问题,提出了一种基于注意力机制与动态稀疏约束的模型压缩方法。该算法首先借助SENet(Squeeze and excitation networks,SENet)模块(可称为SE模块)评估出网络中各个通道的重要性,并施加稀疏正则化;然后提出一种网络稀疏度的自适应惩罚权重设计方法,根据模型学习效果,动态调整权重,将其添加到最终的训练目标上,实现模型动态压缩。最后,通过实验验证所提出的模型压缩方法,在经典的多分类数据集CIFAR 10上进行实验,证明了本文所提出的基于注意力机制与动态稀疏约束的模型压缩方法可降低网络的冗余度,使网络模型参数量减少43.97%,计算量减少82.94%,而分类准确率只比原始VGG16模型下降0.04个百分点。随后又将提出的模型压缩方法应用到杂草检测任务中,在甜菜与杂草数据集上进行实验,实验结果表明,剪枝模型相较于未剪枝模型的模型参数量减少41.26%,计算量减少45.77%,而平均检测精度均值只减少0.91个百分点,证明了该方法在杂草检测方面效果较好。