文中提出了一种可并行分解的层次化动态社区发现算法D-SNCD(Dynamic Social Network CommunityDiscovery).D-SNCD算法充分利用复杂动态社会网络变化的局部性,对算法生成的层次化社区树HOT(Hierar-chical cOmmunity Tree)的分枝进行选择...文中提出了一种可并行分解的层次化动态社区发现算法D-SNCD(Dynamic Social Network CommunityDiscovery).D-SNCD算法充分利用复杂动态社会网络变化的局部性,对算法生成的层次化社区树HOT(Hierar-chical cOmmunity Tree)的分枝进行选择性更新.与传统的对动态社会网络直接采用快照方式进行社区发现相比,D-SNCD算法在效率上取得了明显的提高.由于D-SNCD是对已有的静态社区并行计算方法P-SNCD(ParallelSocial Network Community Discovery)的进一步扩展,因而D-SNCD保持着P-SNCD算法的高扩展性和高分辨率等优点.另外,D-SNCD算法对用户参数输入要求简单.严格的数学证明和充分的实验数据保证了整个算法的正确性和有效性.展开更多
社区发现能够揭示真实社会网络的拓扑结构和动态特性.目前的社区发现算法多针对静态社会网络所设计,而绝大多数真实社会网络的社区结构是动态变化的.针对动态社区发现,现有算法通常基于社区结构平稳变化的假设,无法处理演化过程中可能...社区发现能够揭示真实社会网络的拓扑结构和动态特性.目前的社区发现算法多针对静态社会网络所设计,而绝大多数真实社会网络的社区结构是动态变化的.针对动态社区发现,现有算法通常基于社区结构平稳变化的假设,无法处理演化过程中可能出现的大量社区消亡或涌现等突发事件.为解决有效并高效地发现大规模动态社会网络的社区结构的问题,提出了一种基于邻域跟随关系的社区表示模型Follow-Community,模型刻画的社区由不同角色的节点以及节点间的跟随关系组成,通过发现节点间存在的直接或间接的跟随关系,可将跟随同一个节点的节点所构成的集合归为一个社区.基于该模型提出了一种具有接近线性时间复杂度的邻域跟随算法NFA(Neighborhood Following Algorithm),遍历网络节点一次即可得到静态社会网络的社区结构.进一步扩展得到增量邻域跟随算法iNFA(incremental Neighborhood Following Algorithm).通过更新网络演化过程中相关节点的邻域跟随关系,iNFA可发现动态社会网络的社区结构及社区演化.实验结果验证了算法在大规模动态社会网络社区发现方面具有精度、效率以及稳定性的优势.展开更多
文摘随着互联网的不断发展,大多数社会网络已逐渐显示出动态特性,动态社会网络社团分析对理解现实生活中社会网络结构和功能具有非常重要的意义.针对动态社会网络中的社团发现问题,提出一种基于隐Markov模型(hidden Markov model,HMM)的HMM_DC算法.该算法考虑到社会网络的动态特性,结合历史信息,将社团发现转化为求解隐马尔可夫模型中的最优状态序列问题,将网络中的社团结构和节点信息分别采用状态链和观察链表示,在无须指定额外参数的情况下实现动态网络的社团结构发现.最后,利用该算法和其他算法对VAST数据集、ENRON数据集和Facebook social network数据集进行实验仿真.仿真结果表明:该算法能够快速、准确地发现真实动态网络中的社团,其模块度Q值和互信息NMI值有很大提升.
文摘文中提出了一种可并行分解的层次化动态社区发现算法D-SNCD(Dynamic Social Network CommunityDiscovery).D-SNCD算法充分利用复杂动态社会网络变化的局部性,对算法生成的层次化社区树HOT(Hierar-chical cOmmunity Tree)的分枝进行选择性更新.与传统的对动态社会网络直接采用快照方式进行社区发现相比,D-SNCD算法在效率上取得了明显的提高.由于D-SNCD是对已有的静态社区并行计算方法P-SNCD(ParallelSocial Network Community Discovery)的进一步扩展,因而D-SNCD保持着P-SNCD算法的高扩展性和高分辨率等优点.另外,D-SNCD算法对用户参数输入要求简单.严格的数学证明和充分的实验数据保证了整个算法的正确性和有效性.
文摘社区发现能够揭示真实社会网络的拓扑结构和动态特性.目前的社区发现算法多针对静态社会网络所设计,而绝大多数真实社会网络的社区结构是动态变化的.针对动态社区发现,现有算法通常基于社区结构平稳变化的假设,无法处理演化过程中可能出现的大量社区消亡或涌现等突发事件.为解决有效并高效地发现大规模动态社会网络的社区结构的问题,提出了一种基于邻域跟随关系的社区表示模型Follow-Community,模型刻画的社区由不同角色的节点以及节点间的跟随关系组成,通过发现节点间存在的直接或间接的跟随关系,可将跟随同一个节点的节点所构成的集合归为一个社区.基于该模型提出了一种具有接近线性时间复杂度的邻域跟随算法NFA(Neighborhood Following Algorithm),遍历网络节点一次即可得到静态社会网络的社区结构.进一步扩展得到增量邻域跟随算法iNFA(incremental Neighborhood Following Algorithm).通过更新网络演化过程中相关节点的邻域跟随关系,iNFA可发现动态社会网络的社区结构及社区演化.实验结果验证了算法在大规模动态社会网络社区发现方面具有精度、效率以及稳定性的优势.