传统的同时定位与地图构建(Simultaneous localization and mapping,SLAM)算法在现实场景中易受动态物体及背景的影响,针对该问题提出了一种将语义分割与动态特征点剔除相结合的动态SLAM算法,以实现动态场景地图的构建。首先,根据多层...传统的同时定位与地图构建(Simultaneous localization and mapping,SLAM)算法在现实场景中易受动态物体及背景的影响,针对该问题提出了一种将语义分割与动态特征点剔除相结合的动态SLAM算法,以实现动态场景地图的构建。首先,根据多层通道注意力和空间注意力机制,构造特征融合网络MulAttenNet(Multilayer attention network),并进行语义分割,剔除场景中运动概率大的物体,粗略估计相机位姿;其次,根据相机位姿和深度信息剔除动态区域;最后,利用剔除后的特征点进行地图的构建。对MulAttenNet网络和动态SLAM算法进行实验,以验证算法的有效性,实验结果表明:该算法构造的MulAttenNet网络能有效提高语义分割的准确性,平均像素准确度提高4.05%,均交并比提高2.60%;将该算法构建的动态SLAM算法与现有SLAM算法相比,建图的绝对位姿误差和相对位姿误差都有所缩小。该算法能在动态场景下构建高精度的语义地图。展开更多
为了改善在动态场景下同步定位与地图绘制(Simultaneous Localization And Mapping,SLAM)算法定位精度低的问题,提出一种基于轻量化YOLOv(You Only Look Once version)8n的动态视觉SLAM算法。利用加权双向特征金字塔网络(Bidirectional ...为了改善在动态场景下同步定位与地图绘制(Simultaneous Localization And Mapping,SLAM)算法定位精度低的问题,提出一种基于轻量化YOLOv(You Only Look Once version)8n的动态视觉SLAM算法。利用加权双向特征金字塔网络(Bidirectional Feature Pyramid Network,BiFPN)对YOLOv8n模型进行轻量化改进,减少其参数量。在SLAM算法中引入轻量化YOLOv8n模型,并结合稀疏光流法组成目标检测线程,以去除动态特征点,利用经过筛选的特征点进行特征匹配和位姿估计。实验结果表明:轻量化YOLOv8n模型参数量下降了36.7%,权重减少了33.3%,能够实现YOLOv8n模型的轻量化;与ORB-SLAM3算法相比,所提算法在动态场景下的定位精度提高83.38%,有效提高了动态场景下SLAM算法的精度。展开更多
文摘为了改善在动态场景下同步定位与地图绘制(Simultaneous Localization And Mapping,SLAM)算法定位精度低的问题,提出一种基于轻量化YOLOv(You Only Look Once version)8n的动态视觉SLAM算法。利用加权双向特征金字塔网络(Bidirectional Feature Pyramid Network,BiFPN)对YOLOv8n模型进行轻量化改进,减少其参数量。在SLAM算法中引入轻量化YOLOv8n模型,并结合稀疏光流法组成目标检测线程,以去除动态特征点,利用经过筛选的特征点进行特征匹配和位姿估计。实验结果表明:轻量化YOLOv8n模型参数量下降了36.7%,权重减少了33.3%,能够实现YOLOv8n模型的轻量化;与ORB-SLAM3算法相比,所提算法在动态场景下的定位精度提高83.38%,有效提高了动态场景下SLAM算法的精度。