期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于动态深度学习的风电功率在线预测方法
1
作者 赵洪山 杨铎 +3 位作者 刘欣雨 倪恒毅 张扬帆 林诗雨 《太阳能学报》 2025年第9期171-180,共10页
为适应风电出力的随机性,提出一种基于动态深度学习的风电功率在线预测方法。首先,构建基于双向长短期记忆网络和双向门控循环单元的风电功率基准预测模型,根据训练数据集设置初始参数与权重;其次,采用快速霍夫丁漂移检测方法进行风电... 为适应风电出力的随机性,提出一种基于动态深度学习的风电功率在线预测方法。首先,构建基于双向长短期记忆网络和双向门控循环单元的风电功率基准预测模型,根据训练数据集设置初始参数与权重;其次,采用快速霍夫丁漂移检测方法进行风电状态监测,根据检测结果动态更新深度学习模型;最后,引入随机森林回归模型对预测功率误差进行校正,并通过时间窗实现模型的滚动在线预测。验证结果表明,所提算法相较于Transformev方法均方根误差(RMSE)提高5.68%,平均绝对误差(MAE)提高18.56%,相关系数(R2)提高2.06%,具有较好的预测性能,充分证明所提出的方法能有效提升风电功率预测的准确性。 展开更多
关键词 风电功率预测 动态深度学习 在线预测 双向长短期记忆网络 双向门控循环单元 随机森林
在线阅读 下载PDF
全参数动态学习深度信念网络在滚动轴承寿命预测中的应用 被引量:33
2
作者 杨宇 张娜 程军圣 《振动与冲击》 EI CSCD 北大核心 2019年第10期199-205,249,共8页
相对于传统的"对信号进行特征提取+人工选择对数据敏感的特征值+预测模型"的滚动轴承寿命预测方法,深度信念网络(DBN)有显著的优势:DBN可以直接处理原始数据,让机器自动学习信号特征,从而免去了特征提取和选择的过程,提高了... 相对于传统的"对信号进行特征提取+人工选择对数据敏感的特征值+预测模型"的滚动轴承寿命预测方法,深度信念网络(DBN)有显著的优势:DBN可以直接处理原始数据,让机器自动学习信号特征,从而免去了特征提取和选择的过程,提高了预测的智能性。但是传统的DBN采用固定学习率进行网络学习,不利于寻找最优结果;基于此,提出了一种改进的深度信念网络——全参数动态学习深度信念网络(GPDLDBN),并将其应用于滚动轴承寿命预测中。GPDLDBN预测模型由多层受限玻尔兹曼机(RBM)单元组成,采用自下而上的逐层无监督贪婪算法训练参数;接着采用自上而下的监督学习算法微调整个网络参数,两个过程均采用新的全参数动态学习策略设置各参数;采用GPDLDBN预测模型对实测的滚动轴承寿命数据进行了预测,并与传统的固定学习率的DBN预测模型进行了对比分析。结果表明,GPDLDBN预测模型能够有效加快收敛速度,减少模型的训练时间,且具有更高的预测精度。 展开更多
关键词 深度学习 全参数动态学习深度信念网络(GPDLDBN) 滚动轴承 寿命预测
在线阅读 下载PDF
基于IcD-FDRL的应急监控视频边缘智能传输优化
3
作者 李彦 万征 +1 位作者 邓承志 汪胜前 《北京航空航天大学学报》 北大核心 2025年第7期2314-2329,共16页
应急监控视频传输作为提升突发事件监测、公共安全事件处理、灾后重建等情况下应急工作处理能力的关键技术手段,逐渐成为国家智慧应急体系建设重点支持的专业领域和研究方向。随着5G技术、决策型人工智能技术的不断发展,为实现自适应的... 应急监控视频传输作为提升突发事件监测、公共安全事件处理、灾后重建等情况下应急工作处理能力的关键技术手段,逐渐成为国家智慧应急体系建设重点支持的专业领域和研究方向。随着5G技术、决策型人工智能技术的不断发展,为实现自适应的高质量应急监控视频传输,针对局部区域内公共安全和应急救援监控,建立一种应急监控视频边缘智能传输架构,设计了应急监控视频重要性度量方法,提出簇内动态联邦深度强化学习(IcD-FDRL)算法,并实现了基于簇内动态联邦深度强化学习的应急监控视频边缘智能传输优化,以打破监控数据孤岛,提升算法学习效率,实现重要应急监控视频的低时延、低成本、高质量和优先传输。通过仿真实验进行了对比分析,验证了所提模型和算法的有效性。 展开更多
关键词 应急监控视频 边缘集群 动态联邦深度强化学习 边缘智能 无线视频传输 移动边缘计算
在线阅读 下载PDF
Improving autoencoder-based unsupervised damage detection in uncontrolled structural health monitoring under noisy conditions 被引量:1
4
作者 Yang Kang Wang Linyuan +4 位作者 Gao Chao Chen Mozhi Tian Zhihui Zhou Dunzhi Liu Yang 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第6期91-100,共10页
Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enh... Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions. 展开更多
关键词 structural health monitoring guided waves principal component analysis deep learning DENOISING dynamic environmental condition
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部