期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于动态注意力机制和多尺度特征融合的超短期光伏发电功率预测
1
作者 马东 黄仪灵 +1 位作者 张哲 徐思达 《动力工程学报》 北大核心 2025年第11期1855-1863,共9页
为提升超短期光伏发电功率预测的精度和鲁棒性,提出一种基于Transformer的预测模型。首先,该模型采用小波分解将原始功率序列分解为多尺度分量;其次,通过Transformer模型子模块提取各分量特征,并利用多头注意力机制进行融合;然后,设计... 为提升超短期光伏发电功率预测的精度和鲁棒性,提出一种基于Transformer的预测模型。首先,该模型采用小波分解将原始功率序列分解为多尺度分量;其次,通过Transformer模型子模块提取各分量特征,并利用多头注意力机制进行融合;然后,设计了动态注意力机制,依据外部气象条件动态调整注意力权重;最后,采用均方误差和对数似然损失的混合损失函数进行模型训练。结果表明:该方法在预测精度和泛化能力方面均优于现有主流模型。在数据波动较大的夏季,该方法的平均绝对误差为0.0859 MW,均方根误差为0.1152 MW,明显低于性能次优的Informer模型,为光伏发电功率的准确预测提供了新的思路和方法。 展开更多
关键词 光伏发电预测 动态注意力机制 多尺度特征融合 Transformer模型
在线阅读 下载PDF
基于平行全维动态注意力机制的视觉地点识别方法
2
作者 刘沛津 刘淑婕 +2 位作者 何林 彭莉峻 付雪峰 《液晶与显示》 CAS CSCD 北大核心 2024年第9期1233-1242,共10页
针对天气、季节、光线等环境变化导致的视觉地点识别鲁棒性低的问题,提出了一种提升视觉地点识别特征描述子环境稳健性的多维度注意力机制——平行全维动态注意力机制(POD-Attention)。为实现卷积核在全维度上的动态精细探索,增强特征... 针对天气、季节、光线等环境变化导致的视觉地点识别鲁棒性低的问题,提出了一种提升视觉地点识别特征描述子环境稳健性的多维度注意力机制——平行全维动态注意力机制(POD-Attention)。为实现卷积核在全维度上的动态精细探索,增强特征提取网络对建筑物等不变性特征的提取与学习能力,采用全维动态卷积块在卷积核全维度(输入输出通道、卷积空间和卷积核数量)上添加互补性注意力。将1×1卷积、Skip Squeeze-and-Excitation(SSE)模块与全维动态卷积块平行融合,不仅有效提高了特征提取速率,还扩大了视觉地点识别网络的感受野,进一步提升了视觉地点的识别准确率。在公开数据集上进行的实验表明,基于VGG16及Patch-NetVLAD特征聚合的视觉地点识别方法经POD注意力机制改进后,在Nordland与Mapillary Street-Level Sequences数据集上的Recall@1指标提升了9.7%与1.8%,充分证明了本文POD注意力机制对于网络性能的提升效果,也证明了基于本文POD注意力机制的视觉地点识别方法的有效性。 展开更多
关键词 视觉地点识别 环境鲁棒性 深度学习 平行全维动态注意力机制 平行策略
在线阅读 下载PDF
基于动态注意力机制和多模态循环融合的帕金森氏症识别 被引量:3
3
作者 朱家英 徐志京 《计算机应用研究》 CSCD 北大核心 2023年第2期481-487,共7页
PD(Parkinson’s disease)的运动障碍会累及口、咽、腭肌以及面部肌肉,引起声带震颤和面部运动迟缓,为利用声纹和面部特征识别PD患者提供了可能。为了有效利用以上两种特征以提高PD识别率,提出了基于多尺度特征与动态注意力机制的多模... PD(Parkinson’s disease)的运动障碍会累及口、咽、腭肌以及面部肌肉,引起声带震颤和面部运动迟缓,为利用声纹和面部特征识别PD患者提供了可能。为了有效利用以上两种特征以提高PD识别率,提出了基于多尺度特征与动态注意力机制的多模态循环融合模型对患者进行识别检测。首先,设计了多尺度特征提取网络,将高、低层级特征的语义信息融合以得到完整的特征信息;其次,在多尺度特征融合过程中为了充分考虑模态间的相关性和互补性,提出了以不同模态信息互为辅助条件生成注意力特征图的动态注意力机制算法,降低特征融合时信息的冗余;最后设计了多模态循环融合模型,通过计算循环矩阵的每个行向量与特征向量间的哈达玛积得到更有效的融合特征,提高了模型性能。在自建数据集上进行的多组实验结果表明,提出的方法识别准确率高达96.24%,优于当前流行的单模态和多模态识别算法,可以有效区分PD患者和HP(healthy people),为高效识别PD患者奠定了基础。 展开更多
关键词 帕金森氏症 多模态循环融合 多尺度特征 动态注意力机制
在线阅读 下载PDF
基于多模态特征融合与动态注意力机制的目标识别算法
4
作者 丛潇雨 戴少怀 +2 位作者 陈铖 单世臣 韩玉兵 《现代雷达》 2025年第11期22-28,共7页
针对单模态目标识别易受气候、干扰等影响的问题,文中提出了一种基于多模态特征融合与动态注意力机制的目标识别算法。该方法主要分为三个步骤:首先对多模态图像进行预处理,对地面图像的可见光、红外、合成孔径雷达图像依据模态特性分... 针对单模态目标识别易受气候、干扰等影响的问题,文中提出了一种基于多模态特征融合与动态注意力机制的目标识别算法。该方法主要分为三个步骤:首先对多模态图像进行预处理,对地面图像的可见光、红外、合成孔径雷达图像依据模态特性分别做扩增处理,以提高模型的泛化能力和鲁棒性;然后分别对图像添加分类标签,使用设计不同的深度学习网络训练不同模态的数据,将所有模态预训练的网络去掉分类头;最后将每个分类网络与特征融合模块相接,重新训练提高目标的分类精度。文中所提方法使用多模态图像特征融合进行目标识别实现信息互补,以达到对空间目标的高效率识别,实验表明文中所提算法在红外—光学—合成孔径雷达数据集上取得了96.74%的高识别率。 展开更多
关键词 复杂电磁环境 多模态 特征融合 动态注意力机制 目标识别
在线阅读 下载PDF
融合动态注意力的零样本与少样本遥感目标匹配
5
作者 赖平 朱洪椿 +2 位作者 王盈辉 赵雨凡 王媛湲 《指挥与控制学报》 北大核心 2025年第3期292-302,共11页
针对遥感图像中高价值军事目标在开放环境下的识别与匹配挑战,提出一种结合动态注意力机制与零/少样本学习的通用识别框架。引入基于动态注意力机制的改进方法,通过调整注意力窗口大小,更高效捕捉多尺度目标特征。面向军事监测中对高价... 针对遥感图像中高价值军事目标在开放环境下的识别与匹配挑战,提出一种结合动态注意力机制与零/少样本学习的通用识别框架。引入基于动态注意力机制的改进方法,通过调整注意力窗口大小,更高效捕捉多尺度目标特征。面向军事监测中对高价值目标的识别需求,分别构建基于特征检索的零样本学习框架与原型学习驱动的少样本学习框架,显著提升开放域条件下的高价值遥感目标的匹配能力。实验结果表明,所提方法在遥感目标识别任务中的检测正确率和平均F1分数达到90.54%和47.97%。开放域目标匹配算法在零样本场景下,Rank-1准确率可达55.18%;在少样本场景下,算法正确率可达66.22%。 展开更多
关键词 遥感图像 高价值目标 动态注意力机制 目标识别 开放域目标匹配 零样本学习 少样本学习
在线阅读 下载PDF
基于动态图注意力机制的秦俑点云鲁棒配准 被引量:1
6
作者 海琳琦 耿国华 +2 位作者 杨兴 李康 张海波 《光学精密工程》 EI CAS CSCD 北大核心 2022年第24期3210-3224,共15页
针对目前的点云配准方法在处理秦俑等文物模型时不能很好地解决分辨率不匹配、点云部分重叠、噪声点较多等问题,提出一种基于动态图注意力机制的ResUNet配准模型。该模型将残差模块融入U-Net网络中,使用三维稀疏体素卷积计算点云特征,... 针对目前的点云配准方法在处理秦俑等文物模型时不能很好地解决分辨率不匹配、点云部分重叠、噪声点较多等问题,提出一种基于动态图注意力机制的ResUNet配准模型。该模型将残差模块融入U-Net网络中,使用三维稀疏体素卷积计算点云特征,并引入一种新的归一化技术:批邻域归一化(Batch-Neighborhood Normalization,BNHN),来提高特征对于点密度变化的鲁棒性;为了进一步提高配准性能,该模型通过自注意力机制和交叉注意力机制聚合局部特征和上下文特征,最后结合随机抽样一致性算法来估计源点云与目标点云之间的变化矩阵,完成秦俑文物模型的鲁棒配准。为了验证本文方法的有效与鲁棒,使用四组数据集(3DMatch、3DLoMatch、分辨率不匹配的3DMatch数据集以及两组秦俑数据)对配准模型进行测试,实验结果表明,该算法在3DMatch数据集和3DLoMatch数据集上的配准召回率分别达到90.1%和61.0%;在分辨率不匹配的3DMatch数据集,相比与基于特征学习的配准算法,该算法在配准召回率上提升了5%~20%;在秦俑数据集上,相对旋转误差均小于0.071,相对平移误差均小于0.016,相较于同类算法减少了一个量级或几倍。因此,本文的模型能够提取三维点云的关键特征信息,并且对点密度和重叠度变化具有更高的鲁棒性。 展开更多
关键词 点云配准 动态注意力机制 低重叠点云 点密度变化 残差网络
在线阅读 下载PDF
基于动态注意力深度迁移网络的高炉铁水硅含量在线预测方法 被引量:10
7
作者 蒋珂 蒋朝辉 +2 位作者 谢永芳 潘冬 桂卫华 《自动化学报》 EI CAS CSCD 北大核心 2023年第5期949-963,共15页
铁水硅含量是反映高炉冶炼过程中热状态变化的灵敏指示剂,但无法实时在线检测,造成铁水质量调控盲目.为此,提出一种基于动态注意力深度迁移网络(Attention deep transfer network, ADTNet)的高炉铁水硅含量在线预测方法.首先,针对传统... 铁水硅含量是反映高炉冶炼过程中热状态变化的灵敏指示剂,但无法实时在线检测,造成铁水质量调控盲目.为此,提出一种基于动态注意力深度迁移网络(Attention deep transfer network, ADTNet)的高炉铁水硅含量在线预测方法.首先,针对传统深度网络静态建模思路无法准确描述过程变量与铁水硅含量之间的关系,提出一种基于注意力机制模块的输入过程变量与输出硅含量之间的动态关系描述方法;其次,为降低硅含量预测模型训练时对标签数据的依赖,考虑到铁水温度与硅含量数据之间的正相关性,利用小时级硅含量标签数据微调基于分钟级铁水温度数据预训练好的深度模型的结构,进而提高基于动态注意力深度迁移网络的硅含量预测精度;同时,为增强预测网络的可解释性,实时给出了基于动态注意力机制模块计算的每个样本各过程变量对铁水硅含量的贡献度;最后,基于某钢铁厂2号高炉的工业实验,验证了该方法的准确性、有效性和先进性. 展开更多
关键词 高炉炼铁 铁水硅含量 深度网络 迁移学习 动态注意力机制 预测
在线阅读 下载PDF
基于动态注意力和多角度匹配的答案选择模型 被引量:3
8
作者 李志超 吐尔地•托合提 艾斯卡尔•艾木都拉 《计算机应用》 CSCD 北大核心 2021年第11期3156-3163,共8页
针对当前主流神经网络在处理答案选择任务时无法同时满足句子的充分表示以及句子间信息充分交互的问题,提出了基于动态注意力和多角度匹配(DAMPM)的答案选择模型。首先,调用预训练语言模型的嵌入(ELMo)获得包含简单语义信息的词向量;接... 针对当前主流神经网络在处理答案选择任务时无法同时满足句子的充分表示以及句子间信息充分交互的问题,提出了基于动态注意力和多角度匹配(DAMPM)的答案选择模型。首先,调用预训练语言模型的嵌入(ELMo)获得包含简单语义信息的词向量;接着,在注意力层采用过滤机制有效地去除句子中的噪声,从而更好地得到问句和答案句的句子表征;其次,在匹配层同时引入多种匹配策略来完成句子向量之间的信息交互;然后,利用双向长短期记忆(BiLSTM)网络对匹配层输出的句子向量进行拼接;最后,通过分类器来计算拼接向量的相似度大小,从而得到问句和答案句之间的语义关联。在文本检索会议问答(TRECQA)数据集上的实验结果表明,与基于比较聚合框架的基线模型中的动态滑动注意力网络(DCAN)方法相比,DAMPM在平均准确率均值(MAP)和平均倒数排名(MRR)两个性能指标上均提高了1.6个百分点。在维基百科问答(WikiQA)数据集上的实验结果表明,DAMPM相较DCAN在两个性能指标上分别提高了0.7个百分点和0.8个百分点。所提DAMPM相较于基线模型中的方法整体上有更好的性能表现。 展开更多
关键词 神经网络 答案选择 动态注意力机制 多角度匹配 预训练语言模型
在线阅读 下载PDF
融合多尺度TCN与动态注意力的电池容量预测
9
作者 黄强 陈一童 +1 位作者 王备 姚沐妧 《电池》 2025年第5期1034-1041,共8页
剩余容量的准确预测,对提升锂离子电池使用效率和延长寿命十分重要。传统的时序卷积注意力网络(TCN-Attention)模型,仅使用固定的单一时间窗口卷积核与权重固定的全局注意力机制,未针对时间序列中的关键时段进行重点关注,容易丢失对不... 剩余容量的准确预测,对提升锂离子电池使用效率和延长寿命十分重要。传统的时序卷积注意力网络(TCN-Attention)模型,仅使用固定的单一时间窗口卷积核与权重固定的全局注意力机制,未针对时间序列中的关键时段进行重点关注,容易丢失对不同时间跨度特征的捕捉能力。基于这一问题,提出一种融合多尺度时间卷积网络与动态注意力机制的改进模型,并通过跳跃残差连接进一步优化网络结构,增强模型对短期和长期特征的综合提取能力,提高了预测的准确性。实验结果表明,该模型在锂离子电池剩余容量预测任务中的均方误差(MSE)和均方根误差(RMSE)与TCN-Attention相比,分别降低了50.0%和25.9%,达到了0.0005和0.0232。 展开更多
关键词 多尺度时序卷积网络(TCN) 动态注意力机制 卷积神经网络 残差网络 卷积层结构优化 锂离子电池 容量预测
在线阅读 下载PDF
基于改进YOLOv4算法的煤矿火灾视频智能识别方法研究 被引量:1
10
作者 王伟峰 李煜 +4 位作者 田丰 张宝宝 何地 李高爽 李卓洋 《中国煤炭》 北大核心 2025年第2期88-95,共8页
随着矿井智能化建设,煤矿火灾风险隐患逐渐增加。针对现有火灾检测算法存在准确率低以及对小火焰识别差的问题,提出一种煤矿火灾视频智能识别方法。该方法以YOLOv4为识别模型,采用群组归一化算法对模型归一化算法进行改进,并利用改进算... 随着矿井智能化建设,煤矿火灾风险隐患逐渐增加。针对现有火灾检测算法存在准确率低以及对小火焰识别差的问题,提出一种煤矿火灾视频智能识别方法。该方法以YOLOv4为识别模型,采用群组归一化算法对模型归一化算法进行改进,并利用改进算法降低模型训练时批量值大小引起的误差;为降低矿井环境对火焰识别造成的火焰边缘信息损失,采用随机池化算法与SPP金字塔算法融合、深度可分离卷积与CSP算法融合,实现对动态演化的火焰进行跨尺度特征提取并融合、避免训练过程中的过拟合现象;为降低光源分布不均对视频火焰识别的影响,在模型中引入动态注意力机制,根据火灾视频识别信息的刺激强弱自动调整感受野大小。将标注后的火灾视频图像数据集输入到F YOLOv4算法模型进行训练及测试。结果表明,改进后的F YOLOv4火灾识别模型的平均检测精度达到97.3%左右,较原始模型提升了7.85%,表明该方法可提高检测速度和精度,可有效提高煤矿火灾识别的准确率。 展开更多
关键词 YOLOv4 CSP改进 SPP改进 群组归一化 动态注意力机制
在线阅读 下载PDF
融合IMR-WGAN的时序数据修复方法 被引量:1
11
作者 孟祥福 马荣国 《小型微型计算机系统》 CSCD 北大核心 2024年第3期641-650,共10页
工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小... 工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小迭代修复和改进WGAN混合模型的时序数据修复方法.首先,在预处理阶段,保留异常数据,进行信息标注等处理,从而充分挖掘异常值与真实值之间的特征约束.其次,在噪声模块提出了近邻参数裁剪规则,用于修正最小迭代修复公式生成的噪声向量.将其传递至模拟分布模块的生成器中,同时设计了一个动态时间注意力网络层,用于提取时序特征权重并与门控循环单元串联组合捕捉不同步长的特征依赖,并引入递归多步预测原理共同提升模型的表达能力;在判别器中设计了Abnormal and Truth奖励机制和Weighted Mean Square Error损失函数共同反向优化生成器修复数据的细节和质量.最后,在公开数据集和真实数据集上的实验结果表明,该方法的修复准确度与模型稳定性显著优于现有方法. 展开更多
关键词 数据修复 改进Wasserstein生成对抗网络 Abnormal and Truth奖励机制 动态时间注意力机制 Weighted Mean Square Error损失函数
在线阅读 下载PDF
基于DA-GCN的煤矿人员行为识别方法 被引量:12
12
作者 黄瀚 程小舟 +2 位作者 云霄 周玉 孙彦景 《工矿自动化》 北大核心 2021年第4期62-66,共5页
针对煤矿生产区域的监控视频较为模糊且人员行为类型复杂,常规行为识别方法的准确率较低的问题,提出了一种基于动态注意力与多层感知图卷积网络(DA-GCN)的煤矿人员行为识别方法。采用Openpose算法提取输入视频的人体关键点,得到3个维度... 针对煤矿生产区域的监控视频较为模糊且人员行为类型复杂,常规行为识别方法的准确率较低的问题,提出了一种基于动态注意力与多层感知图卷积网络(DA-GCN)的煤矿人员行为识别方法。采用Openpose算法提取输入视频的人体关键点,得到3个维度、18个坐标的人体关键点信息,降低模糊背景信息的干扰;通过动态多层感知图卷积网络(D-GCN)提取人体关键点的空间特征,通过时间卷积网络(TCN)提取人体关键点的时间特征,提高网络对不同动作的泛化能力;使用动态注意力机制,增强网络对于动作关键帧、关键骨架的注意力程度,进一步缓解视频质量不佳带来的影响;使用Softmax分类器进行动作分类。通过场景分析,将井下行为分为站立、行走、坐、跨越和操作设备5种类型,构建适用于煤矿场景的Cumt-Action数据集。实验结果表明,DA-GCN在Cumt-Action数据集的最高准确率达到99.3%,最高召回率达到98.6%;与其他算法相比,DA-GCN在Cumt-Action数据集和公共数据集NTU-RGBD上均具有较高的识别准确率,证明了DA-GCN优秀的行为识别能力。 展开更多
关键词 煤矿视频监控 关键点提取 井下人员行为识别 动态多层感知图卷积 动态注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部