期刊文献+
共找到371篇文章
< 1 2 19 >
每页显示 20 50 100
核反应堆冷却剂系统故障诊断动态模糊径向基神经网络模型
1
作者 朱佳浩 戴滔 +1 位作者 隋阳 李枭瀚 《科学技术与工程》 北大核心 2025年第11期4567-4573,共7页
针对传统的故障诊断方法难以在不确定环境下准确诊断核电厂核反应堆冷却剂系统(reactor coolant system, RCS)故障这一问题,按照以下路线建立了一种核电厂RCS故障诊断动态模糊径向基神经网络(dynamic fuzzy radial basis function neura... 针对传统的故障诊断方法难以在不确定环境下准确诊断核电厂核反应堆冷却剂系统(reactor coolant system, RCS)故障这一问题,按照以下路线建立了一种核电厂RCS故障诊断动态模糊径向基神经网络(dynamic fuzzy radial basis function neural network, DFRBFNN)模型。首先,根据RCS的故障类型和样本数据,确定DFRBFNN模型的初始结构;然后,应用径向基神经网络方法,构建了RCS故障诊断DFRBFNN初始模型,应用随机初始化方法,对DFRBFNN初始模型的去模糊层到输出层的连接权重进行初始化处理;最后,应用误差下降率法,修正DFRBFNN初始模型的结构和参数,构建了RCS故障诊断DFRBFNN模型。应用所建立的模型对冷却剂丧失、失流和蒸汽发生器管道破裂事故进行诊断,并与传统的故障诊断模型进行对比,验证了本文所建立模型的有效性。研究表明,所构建的核电厂RCS故障诊断DFRBFNN模型能够在不确定环境下准确地诊断RCS的故障。 展开更多
关键词 核电厂 核反应堆冷却剂系统 故障诊断 动态模糊径向基神经网络模型
在线阅读 下载PDF
基于RBF神经网络的光滑不确定模型自适应采样方法
2
作者 郑源 李艳 +2 位作者 高峰 张旭涛 杨勃 《计算机集成制造系统》 北大核心 2025年第8期2920-2929,共10页
由于缺少关于廓形的先验知识,具有不确定性被测表面的重构精度取决于采样方法的自适应程度,即在测量过程中对下一采样点的实时合理设置。利用径向基函数神经网络(RBFNN)的非线性映射能力预测被测光滑表面备选采样点的几何特征响应,并将... 由于缺少关于廓形的先验知识,具有不确定性被测表面的重构精度取决于采样方法的自适应程度,即在测量过程中对下一采样点的实时合理设置。利用径向基函数神经网络(RBFNN)的非线性映射能力预测被测光滑表面备选采样点的几何特征响应,并将其不确定度估计代入提出的考虑轮廓曲率影响的MaxCWVar信息标准中用于选择下一最优测点(NBP)。以叶片截面自由曲线为例,验证了该方法自适应采样性能的优越性。与其他自适应采样策略的对比表明,基于RBFNN的响应预测对于采样点位置确定具有很好的指导作用;与其他三个常用的NBP选择标准相比,根据MaxCWVar标准得到的采样点分布更为合理,能及时准确地跟随轮廓的几何特征变化,经样本密度与曲率之间的相关性分析得以验证。特别是对采样实时性有较高要求的情况下,所提出方法具有更好的重构精度和建模效率。研究成果对于探索快速、智能的复杂无模型光滑曲面重构方法具有启发意义。 展开更多
关键词 不确定模型 自适应采样 径向函数神经网络 MaxCWVar信息标准 下一最优测点
在线阅读 下载PDF
基于RBF神经网络的高速列车速度跟踪控制
3
作者 秦世玉 徐传芳 李云浩 《北京交通大学学报》 北大核心 2025年第3期111-119,共9页
针对考虑未知模型参数、不确定附加阻力、未知车间力和外界干扰等影响的高速列车速度跟踪控制问题,提出基于径向基函数(Radialbasisfunction,RBF)神经网络的自适应非奇异快速终端滑模控制器.首先,考虑高速列车的非线性阻力和相邻车厢间... 针对考虑未知模型参数、不确定附加阻力、未知车间力和外界干扰等影响的高速列车速度跟踪控制问题,提出基于径向基函数(Radialbasisfunction,RBF)神经网络的自适应非奇异快速终端滑模控制器.首先,考虑高速列车的非线性阻力和相邻车厢间的车间耦合作用力影响,建立高速列车多质点模型.其次,设计一种基于新型饱和函数的高速列车有限时间速度跟踪控制策略,引入非奇异快速终端滑模控制方法实现高速列车系统状态的有限时间收敛,改善高速列车速度跟踪的稳态精度和暂态性能.再次,设计基于RBF神经网络的自适应非奇异终端滑模跟踪控制策略,利用自适应技术实现对列车模型参数以及附加阻力、车间力等不确定性项上限的在线估计,并针对不连续切换控制项造成的抖振现象,引入RBF神经网络重映射非奇异快速终端滑模控制策略的切换控制项,同时设计权重系数的自适应更新律,实现连续切换,有效消除抖振现象所带来的影响.最后,基于Lyapunov稳定性理论证明高速列车速度跟踪控制系统的稳定性,以及系统状态的有限时间收敛性,并以CRH380B型动车组作为控制对象进行仿真验证.仿真结果表明:高速列车可以在有限时间内收敛并跟踪理想轨线,跟踪误差下降了49%,跟踪精度提高,能够为高速列车跟踪控制领域提供借鉴和参考. 展开更多
关键词 高速列车 径向函数神经网络 多质点模型 速度跟踪 自适应滑模控制
在线阅读 下载PDF
基于SSA-RBF神经网络的煤自然发火预测模型 被引量:3
4
作者 高飞 梁宁 +1 位作者 贾喆 侯青 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期128-137,共10页
为解决传统煤自燃预测模型预测状态单一和预测精度不高的问题,提出基于麻雀搜索算法(SSA)优化的径向基(RBF)神经网络煤自然发火预测模型。首先,采用程序升温试验分析煤样指标气随温度的变化特征,将煤自然发火过程按煤温分为缓慢(80≤t_(... 为解决传统煤自燃预测模型预测状态单一和预测精度不高的问题,提出基于麻雀搜索算法(SSA)优化的径向基(RBF)神经网络煤自然发火预测模型。首先,采用程序升温试验分析煤样指标气随温度的变化特征,将煤自然发火过程按煤温分为缓慢(80≤t_(i)<120℃)、加速(120≤t_(i)<160℃)和激烈(t_(i)≥160℃)3个氧化阶段,同时分析这3个阶段指标气与煤温的灰色关联度;其次通过不同维度测试函数检验粒子群算法(PSO)、灰狼算法(GWO)和SSA算法性能;最后利用6个矿区数据验证基于SSA-RBF神经网络的煤自燃预测模型的优越性。结果显示,缓慢氧化阶段CO/ΔO_(2)、CO、C_(2)H_(4)这3种指标气体与煤温的灰色关联系数最大;而加速氧化阶段C_(2)H_(4)/C_(2)H_(6)、CO/ΔO_(2)、CO_(2)/CO_(3)种指标与煤温的灰色关联系数最大。3种不同维度函数的测试结果表明:SSA与PSO、GWO相比具有更好的全局搜索能力和稳定性,其收敛速度更快;神经元数量为5个、迭代次数为300次时,SSA-RBF神经网络预测模型对缓慢氧化和加速氧化阶段的预测准确性分别达到了99%和93%。 展开更多
关键词 麻雀搜索算法(SSA) 径向函数(RBF)神经网络 煤自然发火 预测模型 指标气 灰色关联度
在线阅读 下载PDF
基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型 被引量:101
5
作者 叶林 陈政 +1 位作者 赵永宁 朱倩雯 《电力系统自动化》 EI CSCD 北大核心 2015年第16期16-22,共7页
针对光伏发电系统出力波动问题,提出遗传算法(GA)—模糊径向基(RBF)神经网络的光伏发电功率预测模型,将功率预测值应用于光伏发电的蓄电池储能功率调节系统,以降低对电网的冲击。选择与待预测日天气类型相同、日期相近、温度欧氏距离最... 针对光伏发电系统出力波动问题,提出遗传算法(GA)—模糊径向基(RBF)神经网络的光伏发电功率预测模型,将功率预测值应用于光伏发电的蓄电池储能功率调节系统,以降低对电网的冲击。选择与待预测日天气类型相同、日期相近、温度欧氏距离最小的历史日作为相似日,把与光伏发电功率相关性大的太阳辐射强度和温度作为模型输入变量,提出K均值聚类和遗传算法的参数优化方法,建立基于GA—模糊RBF神经网络的最终预测模型。在光伏功率预测的基础上,提出一种平滑控制策略,对光伏并网功率进行有效调节,从而达到平滑光伏功率波动的目的。实例证明,所述预测模型具有较高精度,并验证了平滑功率波动控制策略的有效性。 展开更多
关键词 功率预测 遗传算法 模糊径向神经网络 平滑功率波动
在线阅读 下载PDF
基于参数动态调整的动态模糊神经网络的软件可靠性增长模型 被引量:23
6
作者 刘逻 郭立红 +2 位作者 肖辉 王建军 王改革 《计算机科学》 CSCD 北大核心 2013年第2期186-190,共5页
利用遗传算法对动态模糊神经网络的自身参数进行动态调整(GA-DFNN),并将其应用于软件可靠性增长模型(SRGM)的研究。在对动态模糊神经网络进行训练的过程中,用遗传算法求得动态模糊神经网络自身参数的优化解,根据得到的参数建立基于动态... 利用遗传算法对动态模糊神经网络的自身参数进行动态调整(GA-DFNN),并将其应用于软件可靠性增长模型(SRGM)的研究。在对动态模糊神经网络进行训练的过程中,用遗传算法求得动态模糊神经网络自身参数的优化解,根据得到的参数建立基于动态模糊神经网络的软件失效数据预测模型。利用3组软件缺陷数据,对用GA-DFNN建立的SRGM和模糊神经网络(FNN)以及BP神经网络(BPN)建立的SRGM的预测能力进行了比较,仿真结果证实,根据GA-DFNN建立的SRGM的短期预测能力稳定,短期预测误差小,且具有一定的通用性。 展开更多
关键词 软件可靠性增长模型 动态模糊神经网络 遗传算法 短期预测
在线阅读 下载PDF
遗传算法-模糊径向基神经网络模型预测自润滑镀层耐磨性 被引量:3
7
作者 王亚利 于继明 王艺 《电镀与精饰》 CAS 北大核心 2021年第7期30-34,共5页
针对传统神经网络模型存在的缺陷,引入遗传算法和模糊运算建立遗传算法-模糊径向基神经网络模型(GA-FRBFNNM),介绍了模型结构和仿真思路。以自润滑镀层耐磨性为研究主题开展正交实验,在正交实验结果中任取10组数据作为训练样本用于模型... 针对传统神经网络模型存在的缺陷,引入遗传算法和模糊运算建立遗传算法-模糊径向基神经网络模型(GA-FRBFNNM),介绍了模型结构和仿真思路。以自润滑镀层耐磨性为研究主题开展正交实验,在正交实验结果中任取10组数据作为训练样本用于模型训练,其余6组数据作为测试样本用于模型性能测试。结果表明:GAFRBFNNM的预测值更接近于真实值,其预测精度明显高于相同结构的径向基神经网络模型,验证了该模型是有效的,能够更准确预测自润滑镀层耐磨性。主要归因于引入模糊运算使得径向基神经网络全部节点都具备特定意义,另外引入遗传算法优化了训练算法,避免了模型陷入局部极小点等问题,使得模型性能得到有效提升。 展开更多
关键词 自润滑镀层 摩擦因数 遗传算法-模糊径向神经网络模型 径向神经网络模型
在线阅读 下载PDF
基于广义椭球基函数模糊神经网络的油轮转向动态响应模型(英文) 被引量:1
8
作者 王宁 王丹 李铁山 《中国科学技术大学学报》 CAS CSCD 北大核心 2012年第9期705-713,共9页
基于广义椭球基函数模糊神经网络(GEBF-FNN)算法,提出一种新颖的油轮转向动态响应模型.通过事先建立好的一组油轮操纵非线性微分方程获得训练数据,GEBF-FNN算法用于在线辨识Nomoto型油轮转向响应模型的参数K和T.具体地,GEBF-FNN模型从... 基于广义椭球基函数模糊神经网络(GEBF-FNN)算法,提出一种新颖的油轮转向动态响应模型.通过事先建立好的一组油轮操纵非线性微分方程获得训练数据,GEBF-FNN算法用于在线辨识Nomoto型油轮转向响应模型的参数K和T.具体地,GEBF-FNN模型从没有任何模糊规则开始,基于规则生长准则和参数估计方法,在线生成模糊规则,从而学习出由一组模糊规则构成的具有高精度和精简系统结构的油轮转向动态响应模型.为验证该动态响应模型的有效性,针对典型的Z形操纵进行仿真研究,并进行广泛的比较研究,仿真结果显示基于GEBF-FNN算法的油轮动态响应模型具有理想的逼近和预测性能. 展开更多
关键词 油轮转向 响应模型 模糊神经网络 广义椭球函数
在线阅读 下载PDF
基于模糊RBF神经网络PID的AUV姿态控制研究 被引量:5
9
作者 牛亮 党晓圆 +1 位作者 冯元 崔卫星 《传感器与微系统》 CSCD 北大核心 2024年第10期11-14,共4页
针对自主水下航行器(AUV)高精度、强鲁棒性的运动姿态控制需求,提出了一种径向基函数(RBF)神经网络结合模糊PID控制的水下机器人运动控制器;采用RBF神经网络对模糊PID控制器参数进行优化,有效解决了模糊PID控制过度依赖经验,难以应对水... 针对自主水下航行器(AUV)高精度、强鲁棒性的运动姿态控制需求,提出了一种径向基函数(RBF)神经网络结合模糊PID控制的水下机器人运动控制器;采用RBF神经网络对模糊PID控制器参数进行优化,有效解决了模糊PID控制过度依赖经验,难以应对水下复杂工况的问题。仿真结果表明:模糊RBF神经网络PID控制器在AUV姿态调节中表现出较传统模糊PID控制器更好的响应速度和抗干扰能力,有效改善了AUV姿态控制性能;经实际应用验证,控制器在复杂工况下可以快速收敛至期望姿态并维持稳定。 展开更多
关键词 自主水下航行器 运动控制 径向函数神经网络 模糊PID 运动控制器
在线阅读 下载PDF
基于改进三元模型的波纹管型气动软体驱动器神经网络滑模控制
10
作者 吕播阳 孟庆鑫 +3 位作者 肖怀 赖旭芝 王亚午 吴敏 《中国机械工程》 EI CAS CSCD 北大核心 2024年第8期1414-1425,共12页
针对一款波纹管型气动软体驱动器,提出了一种基于改进三元模型的滑模控制方法,并使用RBF神经网络补偿扰动以实现该型驱动器在竖直方向上对期望轨迹的跟踪控制。首先搭建波纹管型气动软体驱动器实验平台,测试并分析该驱动器的动态特性,... 针对一款波纹管型气动软体驱动器,提出了一种基于改进三元模型的滑模控制方法,并使用RBF神经网络补偿扰动以实现该型驱动器在竖直方向上对期望轨迹的跟踪控制。首先搭建波纹管型气动软体驱动器实验平台,测试并分析该驱动器的动态特性,基于上述动态特性提出波纹管型气动软体驱动器的改进三元模型;然后利用采集到的实验数据,基于最小二乘算法对其进行参数辨识,从而获得所提模型的参数;进而结合改进三元模型设计滑模控制器,使用RBF神经网络对集总扰动进行补偿,并利用Lyapunov方法分析系统的稳定性;最后通过一系列实验验证了所提方法的有效性。 展开更多
关键词 波纹管 气动软体驱动器 三元模型 滑模控制 径向函数神经网络
在线阅读 下载PDF
基于径向基函数神经网络和模糊积分融合的电网分区故障诊断 被引量:54
11
作者 石东源 熊国江 +1 位作者 陈金富 李银红 《中国电机工程学报》 EI CSCD 北大核心 2014年第4期562-569,共8页
为有效解决分区故障诊断关于互连区域间联络线的诊断问题,提出了基于径向基函数神经网络和模糊积分融合的大电网故障诊断方法。该方法通过网络重叠分区将大电网划分为若干区域,故障发生后根据警报信息选择性触发警报信息所在区域对应的... 为有效解决分区故障诊断关于互连区域间联络线的诊断问题,提出了基于径向基函数神经网络和模糊积分融合的大电网故障诊断方法。该方法通过网络重叠分区将大电网划分为若干区域,故障发生后根据警报信息选择性触发警报信息所在区域对应的区域径向基函数神经网络诊断模块,然后利用模糊积分关联融合相连区域关于联络线的诊断输出,实现对联络线的故障诊断。该方法不仅可以诊断各区域内部发生的故障,而且能够有效地诊断区域间联络线发生的故障。算例仿真结果表明:该方法简单、有效,能弥补现有电网分区故障诊断方法在联络线故障诊断方面存在的不足,且能够处理各种复杂故障情况,具有良好的故障容错能力。 展开更多
关键词 大电网 电网分区 故障诊断 径向函数神经网络 模糊积分
在线阅读 下载PDF
基于径向基神经网络和自适应神经模糊系统的电力短期负荷预测方法 被引量:71
12
作者 雷绍兰 孙才新 +2 位作者 周湶 张晓星 程其云 《中国电机工程学报》 EI CSCD 北大核心 2005年第22期78-82,共5页
针对实时电价对短期负荷的影响,建立了径向基(RBF)神经网络和自适应神经网络模糊系统(ANFIS)相结合的短期负荷预测模型。该模型利用RBF神经网络的非线性逼近能力对不考虑电价因素的预测日负荷进行了预测,并根据近期实时电价的变化,应用A... 针对实时电价对短期负荷的影响,建立了径向基(RBF)神经网络和自适应神经网络模糊系统(ANFIS)相结合的短期负荷预测模型。该模型利用RBF神经网络的非线性逼近能力对不考虑电价因素的预测日负荷进行了预测,并根据近期实时电价的变化,应用ANFIS系统对RBF神经网络的负荷预测结果进行修正,以使固定电价时代的预测方法在电价敏感环境下也能达到较好的预测精度,克服了神经网络在电力市场下进行负荷预测时存在的不足。某电网实际预测结果表明,该方法具有较好的预测效果。 展开更多
关键词 电力系统 短期负荷预测 实时电价 径向神经网络 自适应神经模糊系统
在线阅读 下载PDF
基于径向基函数神经网络和模糊控制系统的电网故障诊断新方法 被引量:41
13
作者 毕天姝 倪以信 +1 位作者 吴复立 杨奇逊 《中国电机工程学报》 EI CSCD 北大核心 2005年第14期12-18,共7页
该文针对RBF神经网络的知识存储和诊断过程是一个黑箱,对运行人员不透明,且当电网拓扑结构发生变化或扩展时,神经网络只能重新训练等问题,推导并建立了RBF神经网络和模糊控制系统之间的等值关系,使得蕴含在RBF神经网络权重中的知识转变... 该文针对RBF神经网络的知识存储和诊断过程是一个黑箱,对运行人员不透明,且当电网拓扑结构发生变化或扩展时,神经网络只能重新训练等问题,推导并建立了RBF神经网络和模糊控制系统之间的等值关系,使得蕴含在RBF神经网络权重中的知识转变为等值模糊控制系统中用语言表述的规则。在此基础上,针对电网结构发生变化或扩展情况,提出了RBF神经网络的局部重新训练新算法。提出的基于RBF神经网络和等值模糊控制系统的故障诊断方法在IEEE118母线系统中进行了仿真试验,结果表明:基于RBF网络与等值模糊系统的故障诊断方法诊断知识易于理解,诊断过程透明,并能适应电网拓扑结构发生变化或扩展的情况,效果理想。 展开更多
关键词 电力系统 故障诊断 径向函数神经网络 模糊控制系统 重新训练算法
在线阅读 下载PDF
基于模糊径向基函数神经网络的PID算法球磨机控制系统研究 被引量:20
14
作者 程启明 程尹曼 +1 位作者 郑勇 汪明媚 《中国电机工程学报》 EI CSCD 北大核心 2009年第35期22-28,共7页
针对球磨机制粉系统的多变量、强耦合、非线性和时变性等特点,提出应用于球磨机对象控制的基于模糊径向基函数神经网络的PID控制算法。在这种控制系统中,PID控制器的控制参数采用模糊径向基函数神经网络进行自适应整定,系统控制参数采... 针对球磨机制粉系统的多变量、强耦合、非线性和时变性等特点,提出应用于球磨机对象控制的基于模糊径向基函数神经网络的PID控制算法。在这种控制系统中,PID控制器的控制参数采用模糊径向基函数神经网络进行自适应整定,系统控制参数采用混合优化算法,即首先采用混沌粒子群优化(particle swarm optimization,PSO)算法进行离线粗调,再采用BP算法进行在线细调,从而快速全局收敛得到最佳的PID控制参数。Matlab仿真结果表明,该控制系统有效地解决了球磨机这种复杂对象的控制问题,该系统控制参数的优化算法收敛快、不易陷入局部极小点,系统控制跟踪快、超调小、解耦好、鲁棒性和适应性强,控制品质优于传统PID解耦控制方法。 展开更多
关键词 球磨机 模糊径向函数神经网络 混合优化算法 早熟判据 PID控制
在线阅读 下载PDF
基于径向基函数神经网络的电网模糊元胞故障诊断 被引量:54
15
作者 熊国江 石东源 +1 位作者 朱林 陈祥文 《电力系统自动化》 EI CSCD 北大核心 2014年第5期59-65,共7页
提出了基于径向基函数神经网络的电网模糊元胞故障诊断方法,旨在有效解决神经网络应用于电网故障诊断所面临的适应网络拓扑结构变化的可移植性问题。该方法以单个线路、母线和变压器为元胞对象,以保护各元胞的所有关联保护和对应的断路... 提出了基于径向基函数神经网络的电网模糊元胞故障诊断方法,旨在有效解决神经网络应用于电网故障诊断所面临的适应网络拓扑结构变化的可移植性问题。该方法以单个线路、母线和变压器为元胞对象,以保护各元胞的所有关联保护和对应的断路器为输入,建立了元胞通用神经网络诊断模型,并给出了故障诊断时模型的自动生成方法。此外,考虑到电网故障信息存在不完备性和不确定性,本文采用模糊矢状图来描述电网元件、保护和断路器之间的逻辑推理关系,并提取出蕴含不确定性的模糊推理规则,用于训练元胞通用神经网络。算例仿真结果表明,该方法简单、有效,能处理各种复杂故障情况,且能有效适应网络拓扑结构的变化,具有良好的容错性和可移植性。 展开更多
关键词 电力系统 元胞故障诊断 径向函数神经网络 模糊矢状图 可移植性
在线阅读 下载PDF
基于改进粒子群-径向基神经网络模型的短期电力负荷预测 被引量:26
16
作者 师彪 李郁侠 +3 位作者 于新花 闫旺 何常胜 孟欣 《电网技术》 EI CSCD 北大核心 2009年第17期180-184,共5页
为了准确、快速、高效地预测电网短期负荷,提出了改进的粒子群–径向基神经网络算法。用改进的粒子群算法训练径向基神经网络,实现了径向基函数神经网络的参数优化。建立了短期电力负荷预测模型,综合考虑气象、天气、日期类型等影响负... 为了准确、快速、高效地预测电网短期负荷,提出了改进的粒子群–径向基神经网络算法。用改进的粒子群算法训练径向基神经网络,实现了径向基函数神经网络的参数优化。建立了短期电力负荷预测模型,综合考虑气象、天气、日期类型等影响负荷的因素进行短期负荷预测。算例结果表明,该算法优于径向基神经网络法和粒子群–径向基网络算法,克服了径向基网络和粒子群优化方法的缺点,改善了径向基神经网络的泛化能力,输出稳定,预测精度高,收敛速度快,平均百分比误差可控制在1.2%以内。 展开更多
关键词 负荷预测 改进粒子群-径向神经网络模型 泛化能力 预测精度
在线阅读 下载PDF
磁力仪温度误差的径向基神经网络补偿模型 被引量:14
17
作者 庞鸿锋 罗飞路 +2 位作者 陈棣湘 潘孟春 罗诗途 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第3期695-700,共6页
磁通门磁力仪参数受温度影响明显,直接影响传感器测量精度,需要研究补偿方法,提高测量精度。采用无磁高低温试验箱测量磁通门传感器温度特性;提出基于径向基神经网络的温度误差补偿方法,分别建立磁通门磁力仪零漂误差补偿模型和刻度因... 磁通门磁力仪参数受温度影响明显,直接影响传感器测量精度,需要研究补偿方法,提高测量精度。采用无磁高低温试验箱测量磁通门传感器温度特性;提出基于径向基神经网络的温度误差补偿方法,分别建立磁通门磁力仪零漂误差补偿模型和刻度因子误差补偿模型。结果表明,径向基神经网络能良好逼近磁通门传感器参数的温度特性;与BP神经网络相比,径向基神经网络在零漂补偿中训练时间更短,精度更高,重复性更好,零漂误差的抑制能力更强。补偿后,磁通门磁力仪零漂误差从7.105 5 nT减少到0.766 1 nT;刻度因子误差从6.3E-3减少到7.2E-5;测量值温度误差由213.6 nT补偿到9.1 nT。提出建立通用的温度补偿模型,在不同磁场环境下经过反复测试,采用训练过的模型补偿后,温度误差均降低一个数量级,提高了磁通门磁力仪温度性能和精度。 展开更多
关键词 磁通门磁力仪 径向神经网络 刻度因子 零偏 温度误差 补偿模型
在线阅读 下载PDF
基于层次分析法和径向基函数神经网络的中长期负荷预测综合模型 被引量:38
18
作者 李春祥 牛东晓 孟丽敏 《电网技术》 EI CSCD 北大核心 2009年第2期99-104,共6页
中长期负荷预测是电力系统规划与运行的基础工作,提出基于3指标量,即指标总量、指标增长量和指标增长率的综合模型。首先构建层次分析(analytic hierarchy process,AHP)模型,分别对3个指标量进行分析评价,优选出每个指标量的最优预测模... 中长期负荷预测是电力系统规划与运行的基础工作,提出基于3指标量,即指标总量、指标增长量和指标增长率的综合模型。首先构建层次分析(analytic hierarchy process,AHP)模型,分别对3个指标量进行分析评价,优选出每个指标量的最优预测模型,然后利用径向基函数(radial basic function,RBF)神经网络对3个最优模型的预测结果进行拟合,并将GDP因素也作为神经网络输入数据之一,输出最终的预测结果。AHP模型中综合考虑了模型预测误差和模型拟合度,并成功地加入了人工干预的因素,依据专家经验判断模型的信任度和预测结果趋势可信度。AHP模型采用与预测时刻最近的历史数据进行分析,因此具有较好的实时性。实验结果表明该综合模型具有较高的预测精度,实际应用效果较好。 展开更多
关键词 负荷预测 层次分析法 径向函数神经网络 三指标量 综合模型
在线阅读 下载PDF
基于广义动态模糊神经网络的光伏电池MPPT控制 被引量:23
19
作者 杨旭 曾成碧 陈宾 《电力系统保护与控制》 EI CSCD 北大核心 2010年第13期22-25,共4页
依照最大功率点跟踪(MPPT)的原理,在综合考虑各种不同的控制方法优缺点的基础上,提出了一种新的基于椭圆基的广义动态模糊神经网络(GD-FNN)的光伏电池的智能控制方法。通过GD-FNN算法调节PWM的占空比来控制光伏电池的输出电压,实现阻抗... 依照最大功率点跟踪(MPPT)的原理,在综合考虑各种不同的控制方法优缺点的基础上,提出了一种新的基于椭圆基的广义动态模糊神经网络(GD-FNN)的光伏电池的智能控制方法。通过GD-FNN算法调节PWM的占空比来控制光伏电池的输出电压,实现阻抗匹配,达到能量的最优化。仿真结果表明,这种控制方法能够有效地跟踪到电池的最大功率,并且具有较好的稳定性。 展开更多
关键词 光伏电池 MPPT 椭圆 广义动态模糊神经网络 智能控制
在线阅读 下载PDF
改进粒子群优化Takagi-Sugeno模糊径向基函数神经网络的非线性系统建模 被引量:3
20
作者 李丽娜 甘晓晔 +1 位作者 徐攀峰 马俊 《计算机应用》 CSCD 北大核心 2014年第5期1341-1344,1372,共5页
针对复杂非线性系统建模的难点问题,提出了一种基于改进的粒子群优化算法(PSO)优化的T-S模糊径向基函数(RBF)神经网络的新型系统建模算法。该算法将T-S模糊模型良好的可解释性及RBF神经网络的自学习能力相结合,构成T-S模糊RBF神经网络... 针对复杂非线性系统建模的难点问题,提出了一种基于改进的粒子群优化算法(PSO)优化的T-S模糊径向基函数(RBF)神经网络的新型系统建模算法。该算法将T-S模糊模型良好的可解释性及RBF神经网络的自学习能力相结合,构成T-S模糊RBF神经网络用于系统建模,并采用动态调整惯性权重的改进的PSO算法结合递推最小二乘算法实现网络参数的优化调整。首先,利用所提算法进行了非线性多维函数的逼近仿真,仿真结果均方差(MSE)为0.00017,绝对值误差不大于0.04,逼近精度较高;又将该算法用于建立动态流量软测量模型,并进行了相关的实验研究,动态流量测量结果平均绝对误差小于0.15 L/min,相对误差为1.97%,基本满足测量要求,并优于已有算法。上述仿真及实验研究结果表明,所提算法对于复杂非线性系统具有较高的建模精度和良好的自适应性。 展开更多
关键词 动态流量 软测量 T-S模糊模型 径向函数神经网络 粒子群优化算法
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部