期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于DBN的软件可靠性预测模型的研究
被引量:
2
1
作者
王国涛
石振国
吴小景
《计算机应用研究》
CSCD
北大核心
2016年第12期3739-3742,3773,共5页
安全攸关系统广泛应用于交通、工控、航空等与国计民生相关的安全攸关领域,对可靠性有着非常高的要求。而控制软件往往是安全攸关系统的核心,因此对它的可靠性预测精度必须达到很高的要求。将深度置信网络(DBN)应用于软件可靠性增长预...
安全攸关系统广泛应用于交通、工控、航空等与国计民生相关的安全攸关领域,对可靠性有着非常高的要求。而控制软件往往是安全攸关系统的核心,因此对它的可靠性预测精度必须达到很高的要求。将深度置信网络(DBN)应用于软件可靠性增长预测模型(SRPM)的研究。针对DBN中核心模块RBM的无监督学习,采用了动态模式跳转算法(DMH)。该算法通过动态地维护一个模式集,然后借助模式集中模式的跳转来完成RBM中状态的跳转,使RBM的无监督学习具有很高的学习效率。通过与参数动态调整的动态模糊神经网络(SADFNN)、BP神经网络(BPN)以及基于萤火虫算法的BP神经网络(FABP)建立的SRPM进行预测能力的比较,实验结果表明基于DBN建立的SRGM的预测结果精度最高且最稳定。
展开更多
关键词
深度置信网络
软件可靠性预测模型
动态模式跳转
限制波尔兹曼机
无监督学习
在线阅读
下载PDF
职称材料
题名
基于DBN的软件可靠性预测模型的研究
被引量:
2
1
作者
王国涛
石振国
吴小景
机构
南通大学电子信息学院
南通大学计算机科学与技术学院
出处
《计算机应用研究》
CSCD
北大核心
2016年第12期3739-3742,3773,共5页
文摘
安全攸关系统广泛应用于交通、工控、航空等与国计民生相关的安全攸关领域,对可靠性有着非常高的要求。而控制软件往往是安全攸关系统的核心,因此对它的可靠性预测精度必须达到很高的要求。将深度置信网络(DBN)应用于软件可靠性增长预测模型(SRPM)的研究。针对DBN中核心模块RBM的无监督学习,采用了动态模式跳转算法(DMH)。该算法通过动态地维护一个模式集,然后借助模式集中模式的跳转来完成RBM中状态的跳转,使RBM的无监督学习具有很高的学习效率。通过与参数动态调整的动态模糊神经网络(SADFNN)、BP神经网络(BPN)以及基于萤火虫算法的BP神经网络(FABP)建立的SRPM进行预测能力的比较,实验结果表明基于DBN建立的SRGM的预测结果精度最高且最稳定。
关键词
深度置信网络
软件可靠性预测模型
动态模式跳转
限制波尔兹曼机
无监督学习
Keywords
deep belief networks
software reliability prediction model
dynamic mode-hopping MCMC
restricted Bohzmann machine
unsupervised learning
分类号
TP311.5 [自动化与计算机技术—计算机软件与理论]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于DBN的软件可靠性预测模型的研究
王国涛
石振国
吴小景
《计算机应用研究》
CSCD
北大核心
2016
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部