In this paper a dynamical model of a two degree of freedom,tendon based,parallel manipulator (TBPM) system is proposed. The motion control methods of the TBPM system were designed. Using MATLAB,the motion control simu...In this paper a dynamical model of a two degree of freedom,tendon based,parallel manipulator (TBPM) system is proposed. The motion control methods of the TBPM system were designed. Using MATLAB,the motion control simulation of this model TBPM system was implemented in preparation for actual experiments. The results of the simulation demonstrated that the response time of the system was in a reasonable range,the motion behavior of the platform was stable and the tension forces acting on the tendons were in a safe range and acceptable. Furthermore,the parameters of the controllers were optimized using MATLAB and better results for the time response were obtained.展开更多
To provide a suitable model for AUV simulation and control purposes, a general nonlinear dynamic model including a novel thruster hydrodynamics model was derived. Based on the modeling method, the "AUV-XX" s...To provide a suitable model for AUV simulation and control purposes, a general nonlinear dynamic model including a novel thruster hydrodynamics model was derived. Based on the modeling method, the "AUV-XX" simulation platform was established to carry out fundamental tests on its motion characteristics, stability, and controllability. A motion control strategy consisting of both position and speed control in a horizontal plane was designed for different task assignments of underwater vehicles. Combined control of heave and pitch was adopted to compensate for the reduction of vertical tunnel thrusters when the vehicle is moving at a high speed. An improved S-surface controller based on the capacitor plate model was developed with flexible gain selections made possible by different forms of restricting the error and changing the rate of the error. Simulation results show that the derived general mathematical model together with simulation platform can provide a test bed for fundamental tests of motion control. Additionally, the capacitor plate model S-surface control shows a good performance in guiding the vehicle to achieve the desired position and speed with sufficient accuracy.展开更多
基金Project HI 370/24-1 supported by the German Research Community (DFG)
文摘In this paper a dynamical model of a two degree of freedom,tendon based,parallel manipulator (TBPM) system is proposed. The motion control methods of the TBPM system were designed. Using MATLAB,the motion control simulation of this model TBPM system was implemented in preparation for actual experiments. The results of the simulation demonstrated that the response time of the system was in a reasonable range,the motion behavior of the platform was stable and the tension forces acting on the tendons were in a safe range and acceptable. Furthermore,the parameters of the controllers were optimized using MATLAB and better results for the time response were obtained.
基金the National Science Foundation under Grant No.50879014,No.50909025
文摘To provide a suitable model for AUV simulation and control purposes, a general nonlinear dynamic model including a novel thruster hydrodynamics model was derived. Based on the modeling method, the "AUV-XX" simulation platform was established to carry out fundamental tests on its motion characteristics, stability, and controllability. A motion control strategy consisting of both position and speed control in a horizontal plane was designed for different task assignments of underwater vehicles. Combined control of heave and pitch was adopted to compensate for the reduction of vertical tunnel thrusters when the vehicle is moving at a high speed. An improved S-surface controller based on the capacitor plate model was developed with flexible gain selections made possible by different forms of restricting the error and changing the rate of the error. Simulation results show that the derived general mathematical model together with simulation platform can provide a test bed for fundamental tests of motion control. Additionally, the capacitor plate model S-surface control shows a good performance in guiding the vehicle to achieve the desired position and speed with sufficient accuracy.