期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Faster R-CNN的蔗田杂草检测算法研究
被引量:
4
1
作者
黄书琴
黄福乐
+2 位作者
罗柳茗
覃锋
李岩舟
《中国农机化学报》
北大核心
2024年第6期208-215,共8页
为提高自然环境下蔗田杂草检测准确率,提出一种基于改进的Faster R-CNN的蔗田杂草检测算法。在特征提取阶段使用BFP模块均衡各级语义特征来加强对杂草图像深层特征的提取;采用DLA策略动态调整网络的标签预测阈值,解决训练前期正样本稀...
为提高自然环境下蔗田杂草检测准确率,提出一种基于改进的Faster R-CNN的蔗田杂草检测算法。在特征提取阶段使用BFP模块均衡各级语义特征来加强对杂草图像深层特征的提取;采用DLA策略动态调整网络的标签预测阈值,解决训练前期正样本稀缺问题;使用Soft-NMS对模型进行优化,通过改进原模型的NMS减少单类目标漏检并提高目标定位精度。试验结果表明,优化后算法的mAP值达81.3%,与原Faster R-CNN算法相比,精度提升6.2%,平均每幅图像测试耗时0.132 s,且在AP 50、AP s、AP l指标上分别有6.5%、4.7%、5.1%的提高。改进后的算法具有较高的检测精度和稳定性,可以满足复杂自然环境下的蔗田杂草检测需求。
展开更多
关键词
杂草检测
Faster
R-CNN
均衡特征金字塔
动态
分配
标签
策略
软非极大抑制
在线阅读
下载PDF
职称材料
基于改进YOLOv5s的矿工排队检测方法
被引量:
6
2
作者
郝明月
闵冰冰
+3 位作者
张新建
赵作鹏
吴晨
王欣
《工矿自动化》
CSCD
北大核心
2023年第11期160-166,共7页
传统的目标检测算法识别矿工排队异常行为时需人工提取特征,检测时间长、检测精度低;基于卷积神经网络的目标检测算法在检测速度和精度上有所提升,但在遮挡、昏暗和光照不均等场景下的检测效果难以保障。针对上述问题,提出了一种改进YOL...
传统的目标检测算法识别矿工排队异常行为时需人工提取特征,检测时间长、检测精度低;基于卷积神经网络的目标检测算法在检测速度和精度上有所提升,但在遮挡、昏暗和光照不均等场景下的检测效果难以保障。针对上述问题,提出了一种改进YOLOv5s(HPI-YOLOv5s)模型,并将其用于矿工排队检测。HPIYOLOv5s模型在YOLOv5s模型的基础上对路径聚合网络(PANet)进行改进,通过删除单个输入边节点、增加双向交叉路径,构建了一种双向交叉特征金字塔网络(BCrFPN)进行多尺度特征融合。鉴于手动设置阈值的标签分配策略鲁棒性不高,在自适应训练样本选择(ATSS)动态设置阈值的基础上,提出动态标签分配策略(ATSS_PLUS),更合理地评估候选样本的质量,动态设定每个真实目标的阈值,具有更高的检测精度和鲁棒性。通过半平面交法计算人脸框与所划定排队区域的相交面积,并将相交面积和人脸框面积之比与设置的阈值比较以判断矿工是否有序排队。实验结果表明:HPI-YOLOv5s模型比YOLOv5s模型的准确率提高了1.9%,权重大小减少了32%,参数量减少了6.9%,检测速度提高了7.8%,且针对遮挡、昏暗、光照不均的矿井图像,能够更准确地识别矿工排队情况。
展开更多
关键词
矿工排队检测
人脸检测
双向交叉特征金字塔网络
特征融合
自适应训练样本选择
动态标签分配
在线阅读
下载PDF
职称材料
题名
基于Faster R-CNN的蔗田杂草检测算法研究
被引量:
4
1
作者
黄书琴
黄福乐
罗柳茗
覃锋
李岩舟
机构
广西大学机械工程学院
南宁学院智能制造学院
中国农业科学院深圳农业基因组研究所(岭南现代农业科学与技术广东省实验室深圳分中心)
出处
《中国农机化学报》
北大核心
2024年第6期208-215,共8页
基金
国家重点研发计划项目(2022YFD2301100)
广西科技重大专项经费资助(桂科AA22117007,桂科AA22117005)。
文摘
为提高自然环境下蔗田杂草检测准确率,提出一种基于改进的Faster R-CNN的蔗田杂草检测算法。在特征提取阶段使用BFP模块均衡各级语义特征来加强对杂草图像深层特征的提取;采用DLA策略动态调整网络的标签预测阈值,解决训练前期正样本稀缺问题;使用Soft-NMS对模型进行优化,通过改进原模型的NMS减少单类目标漏检并提高目标定位精度。试验结果表明,优化后算法的mAP值达81.3%,与原Faster R-CNN算法相比,精度提升6.2%,平均每幅图像测试耗时0.132 s,且在AP 50、AP s、AP l指标上分别有6.5%、4.7%、5.1%的提高。改进后的算法具有较高的检测精度和稳定性,可以满足复杂自然环境下的蔗田杂草检测需求。
关键词
杂草检测
Faster
R-CNN
均衡特征金字塔
动态
分配
标签
策略
软非极大抑制
Keywords
weeds detection
Faster R-CNN
balanced feature pyramid
dynamic label assignment
soft non-maximum suppression
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于改进YOLOv5s的矿工排队检测方法
被引量:
6
2
作者
郝明月
闵冰冰
张新建
赵作鹏
吴晨
王欣
机构
河南龙宇能源股份有限公司陈四楼煤矿
中国矿业大学计算机科学与技术学院
出处
《工矿自动化》
CSCD
北大核心
2023年第11期160-166,共7页
基金
国家自然科学基金资助项目(61976217)。
文摘
传统的目标检测算法识别矿工排队异常行为时需人工提取特征,检测时间长、检测精度低;基于卷积神经网络的目标检测算法在检测速度和精度上有所提升,但在遮挡、昏暗和光照不均等场景下的检测效果难以保障。针对上述问题,提出了一种改进YOLOv5s(HPI-YOLOv5s)模型,并将其用于矿工排队检测。HPIYOLOv5s模型在YOLOv5s模型的基础上对路径聚合网络(PANet)进行改进,通过删除单个输入边节点、增加双向交叉路径,构建了一种双向交叉特征金字塔网络(BCrFPN)进行多尺度特征融合。鉴于手动设置阈值的标签分配策略鲁棒性不高,在自适应训练样本选择(ATSS)动态设置阈值的基础上,提出动态标签分配策略(ATSS_PLUS),更合理地评估候选样本的质量,动态设定每个真实目标的阈值,具有更高的检测精度和鲁棒性。通过半平面交法计算人脸框与所划定排队区域的相交面积,并将相交面积和人脸框面积之比与设置的阈值比较以判断矿工是否有序排队。实验结果表明:HPI-YOLOv5s模型比YOLOv5s模型的准确率提高了1.9%,权重大小减少了32%,参数量减少了6.9%,检测速度提高了7.8%,且针对遮挡、昏暗、光照不均的矿井图像,能够更准确地识别矿工排队情况。
关键词
矿工排队检测
人脸检测
双向交叉特征金字塔网络
特征融合
自适应训练样本选择
动态标签分配
Keywords
miner queue detection
face detection
bidirectional cross feature pyramid network
feature fusion
adaptive training sample selection
dynamic label allocation
分类号
TD76 [矿业工程—矿井通风与安全]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Faster R-CNN的蔗田杂草检测算法研究
黄书琴
黄福乐
罗柳茗
覃锋
李岩舟
《中国农机化学报》
北大核心
2024
4
在线阅读
下载PDF
职称材料
2
基于改进YOLOv5s的矿工排队检测方法
郝明月
闵冰冰
张新建
赵作鹏
吴晨
王欣
《工矿自动化》
CSCD
北大核心
2023
6
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部