期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
利用深度神经网络和先兆信号的江苏夏季降水客观预测方法
被引量:
11
1
作者
蒋薇
刘芸芸
+1 位作者
陈鹏
张志薇
《气象学报》
CAS
CSCD
北大核心
2021年第6期1035-1048,共14页
利用1961—2019年江苏省67个站降水量和气候指数数据集等资料,选取大气环流、海温和积雪等先兆信号的不同组合作为预测因子方案,通过对比不同机器学习方法对江苏省夏季降水开展预测试验。结果表明,深度神经网络(Deep Neural Network,DNN...
利用1961—2019年江苏省67个站降水量和气候指数数据集等资料,选取大气环流、海温和积雪等先兆信号的不同组合作为预测因子方案,通过对比不同机器学习方法对江苏省夏季降水开展预测试验。结果表明,深度神经网络(Deep Neural Network,DNN)较传统统计方法和其他机器学习方法有一定优势,深度神经网络结合动态权重集合因子方案对江苏省夏季降水的预测技巧最高,其独立样本检验结果稳定,2015—2019年的平均PS评分为76.0,距平符号一致率为0.62,距平相关系数达0.35,尤其对江苏省中南部的预测技巧更高,具有业务应用价值。不同预测因子方案对比分析表明,大气环流因子在江苏省夏季降水预测中做主要贡献,而海温因子和积雪等其他因子也有正贡献,说明使用综合性预测因子以及集合方案有助于提升季节预测准确率。
展开更多
关键词
夏季降水
季节预测
先兆信号
深度神经网络
动态权重集合方案
在线阅读
下载PDF
职称材料
题名
利用深度神经网络和先兆信号的江苏夏季降水客观预测方法
被引量:
11
1
作者
蒋薇
刘芸芸
陈鹏
张志薇
机构
江苏省气候中心
国家气候中心
江苏省气象信息中心
江苏省气象科学研究所
出处
《气象学报》
CAS
CSCD
北大核心
2021年第6期1035-1048,共14页
基金
江苏省气象局科研项目重点项目(KZ202004)
江苏省气象局科研项目面上项目(KM202009)
中国气象局预报员专项(CMAYBY2020-164)
文摘
利用1961—2019年江苏省67个站降水量和气候指数数据集等资料,选取大气环流、海温和积雪等先兆信号的不同组合作为预测因子方案,通过对比不同机器学习方法对江苏省夏季降水开展预测试验。结果表明,深度神经网络(Deep Neural Network,DNN)较传统统计方法和其他机器学习方法有一定优势,深度神经网络结合动态权重集合因子方案对江苏省夏季降水的预测技巧最高,其独立样本检验结果稳定,2015—2019年的平均PS评分为76.0,距平符号一致率为0.62,距平相关系数达0.35,尤其对江苏省中南部的预测技巧更高,具有业务应用价值。不同预测因子方案对比分析表明,大气环流因子在江苏省夏季降水预测中做主要贡献,而海温因子和积雪等其他因子也有正贡献,说明使用综合性预测因子以及集合方案有助于提升季节预测准确率。
关键词
夏季降水
季节预测
先兆信号
深度神经网络
动态权重集合方案
Keywords
Summer precipitation
Seasonal prediction
Precursory signals
Deep Neural Network(DNN)
Dynamic weight set scheme
分类号
P456 [天文地球—大气科学及气象学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
利用深度神经网络和先兆信号的江苏夏季降水客观预测方法
蒋薇
刘芸芸
陈鹏
张志薇
《气象学报》
CAS
CSCD
北大核心
2021
11
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部