基于衍射CT成像技术,在弱散射条件下根据收发分置目标散射强度的指向分布特性,可以重建目标形状、以及周围介质的声学参数。在目标的正前方,前向散射波和直达波同时到达接收阵,特别是当目标为密度和声速接近于水的弱散射目标时,散射回...基于衍射CT成像技术,在弱散射条件下根据收发分置目标散射强度的指向分布特性,可以重建目标形状、以及周围介质的声学参数。在目标的正前方,前向散射波和直达波同时到达接收阵,特别是当目标为密度和声速接近于水的弱散射目标时,散射回波完全淹没在直达波中,抑制直达波干扰才能实现目标的识别、方位估计以及声学特性解释。基于语音识别的动态时间归整(Dynamic Time Warping,DTW)算法,是利用归整路径距离的动态规划来求解发音长短不一的孤立词模板匹配的问题。固定入射波方向,以浸没水中的无限长圆柱体目标为例获取实验数据,将DTW算法用于直达波和散射波的分离,并将消除直达波影响后的目标散射远场的强度与严格的解析结果进行了对比,结果表明DTW算法可以有效地在强直达波干扰背景中有效提取目标散射信息。展开更多
针对SAR图像数据集的特点,提出了一种基于像元级图像时间序列相似性的水体提取方法。其基本思想是:构建像元级SAR图像时间序列,选取动态时间归整(dynamic time warping,DTW)算法作为时间序列相似度的度量方法,计算所有像元与标准水体像...针对SAR图像数据集的特点,提出了一种基于像元级图像时间序列相似性的水体提取方法。其基本思想是:构建像元级SAR图像时间序列,选取动态时间归整(dynamic time warping,DTW)算法作为时间序列相似度的度量方法,计算所有像元与标准水体像元时间序列的相似性;将水体边缘混合像元的DTW距离值设定为参考阈值,采用阈值法提取相似性较高的时间序列数据,其对应的像元即被识别为水体像元;最后利用每个像元的DTW距离值代替其后向散射值,采用8邻域搜索方法提高水体识别的精度。以2008年1—12月获取的25景分辨率为150 m的ENVISAT ASAR图像进行水体像元提取试验,结果表明,该方法的完整率和正确率均较高,能够应用于大范围区域水体的提取与制图。展开更多
传统动态时间规整算法(Dynamic Time Warping,DTW)及其变种算法被广泛应用于多维时间序列的相似性分析,但它们通常只关注单个时间点的信息而忽略了上下文信息,从而很可能匹配两个形状完全不同的点。因此提出一种结合形状特征及其上下文...传统动态时间规整算法(Dynamic Time Warping,DTW)及其变种算法被广泛应用于多维时间序列的相似性分析,但它们通常只关注单个时间点的信息而忽略了上下文信息,从而很可能匹配两个形状完全不同的点。因此提出一种结合形状特征及其上下文的多维DTW算法(Multi-Dimensional Contextual Dynamic Time Warping,MDCDTW)。该算法首先计算多维时间序列的一阶梯度,然后对其进行采样处理,并以多维梯度矩阵表示当前时间点的形状信息及其上下文信息,最后利用DTW求解多维时间序列间的最短匹配路径。为检测算法设计的合理性,对算法进行了定性分析和定量分析,实验结果表明MDC-DTW算法设计是合理的;为检测MDC-DTW的性能,选用5个多维时间序列数据集,并与4个优异的多维DTW算法进行对比实验,实验结果表明MDC-DTW具有较高的准确率和运行效率。展开更多
近年来,随着微电子技术和计算技术的发展以及智能手机和穿戴设备的普及,生物信号处理以及模式识别成为工程领域的热门话题.由于中国人口老龄化,适宜的身体锻炼和健康医疗已经成为社会关注的热点.计步器作为一种运动检测设备进入到人们...近年来,随着微电子技术和计算技术的发展以及智能手机和穿戴设备的普及,生物信号处理以及模式识别成为工程领域的热门话题.由于中国人口老龄化,适宜的身体锻炼和健康医疗已经成为社会关注的热点.计步器作为一种运动检测设备进入到人们生活中,同时智能手机上有计步功能的应用软件得到普及,但是目前的计步算法不能很好地去除人们生活中产生的噪声,影响计步精度,该文提出了一种高精度计步方法,目标是去除计步算法中的噪声,减少其他因素对计步的影响.该计步方法基于智能手机中加速度传感器的三维离散信号,对三维信号进行分析,提取信号中的特征,最终高精度地统计人行走的步数.该文首先对加速度传感器三维信号的选取进行了讨论,采取平滑滤波算法对信号进行去噪,接着提取信号中的特征并使用M5算法对信号进行分类,最终对有效信号采取动态时间归整(Dynamic Time Warping,DTW)算法进行计步.该文最后对此计步方法的精度和抗干扰能力进行评测,证明该方法在统计步数上具有较高的精度和抗干扰能力.展开更多
文摘基于衍射CT成像技术,在弱散射条件下根据收发分置目标散射强度的指向分布特性,可以重建目标形状、以及周围介质的声学参数。在目标的正前方,前向散射波和直达波同时到达接收阵,特别是当目标为密度和声速接近于水的弱散射目标时,散射回波完全淹没在直达波中,抑制直达波干扰才能实现目标的识别、方位估计以及声学特性解释。基于语音识别的动态时间归整(Dynamic Time Warping,DTW)算法,是利用归整路径距离的动态规划来求解发音长短不一的孤立词模板匹配的问题。固定入射波方向,以浸没水中的无限长圆柱体目标为例获取实验数据,将DTW算法用于直达波和散射波的分离,并将消除直达波影响后的目标散射远场的强度与严格的解析结果进行了对比,结果表明DTW算法可以有效地在强直达波干扰背景中有效提取目标散射信息。
文摘针对SAR图像数据集的特点,提出了一种基于像元级图像时间序列相似性的水体提取方法。其基本思想是:构建像元级SAR图像时间序列,选取动态时间归整(dynamic time warping,DTW)算法作为时间序列相似度的度量方法,计算所有像元与标准水体像元时间序列的相似性;将水体边缘混合像元的DTW距离值设定为参考阈值,采用阈值法提取相似性较高的时间序列数据,其对应的像元即被识别为水体像元;最后利用每个像元的DTW距离值代替其后向散射值,采用8邻域搜索方法提高水体识别的精度。以2008年1—12月获取的25景分辨率为150 m的ENVISAT ASAR图像进行水体像元提取试验,结果表明,该方法的完整率和正确率均较高,能够应用于大范围区域水体的提取与制图。
文摘传统动态时间规整算法(Dynamic Time Warping,DTW)及其变种算法被广泛应用于多维时间序列的相似性分析,但它们通常只关注单个时间点的信息而忽略了上下文信息,从而很可能匹配两个形状完全不同的点。因此提出一种结合形状特征及其上下文的多维DTW算法(Multi-Dimensional Contextual Dynamic Time Warping,MDCDTW)。该算法首先计算多维时间序列的一阶梯度,然后对其进行采样处理,并以多维梯度矩阵表示当前时间点的形状信息及其上下文信息,最后利用DTW求解多维时间序列间的最短匹配路径。为检测算法设计的合理性,对算法进行了定性分析和定量分析,实验结果表明MDC-DTW算法设计是合理的;为检测MDC-DTW的性能,选用5个多维时间序列数据集,并与4个优异的多维DTW算法进行对比实验,实验结果表明MDC-DTW具有较高的准确率和运行效率。
文摘近年来,随着微电子技术和计算技术的发展以及智能手机和穿戴设备的普及,生物信号处理以及模式识别成为工程领域的热门话题.由于中国人口老龄化,适宜的身体锻炼和健康医疗已经成为社会关注的热点.计步器作为一种运动检测设备进入到人们生活中,同时智能手机上有计步功能的应用软件得到普及,但是目前的计步算法不能很好地去除人们生活中产生的噪声,影响计步精度,该文提出了一种高精度计步方法,目标是去除计步算法中的噪声,减少其他因素对计步的影响.该计步方法基于智能手机中加速度传感器的三维离散信号,对三维信号进行分析,提取信号中的特征,最终高精度地统计人行走的步数.该文首先对加速度传感器三维信号的选取进行了讨论,采取平滑滤波算法对信号进行去噪,接着提取信号中的特征并使用M5算法对信号进行分类,最终对有效信号采取动态时间归整(Dynamic Time Warping,DTW)算法进行计步.该文最后对此计步方法的精度和抗干扰能力进行评测,证明该方法在统计步数上具有较高的精度和抗干扰能力.