动态时间规整算法(Dynamic Time Warping,DTW)是语音识别中常用的技术之一。为了提升因数据量增加以及算法对数据的高度依赖性所导致的计算性能降低,提出一种针对语音帧的动态时间规整算法硬件架构。识别计算过程中,通过使用算法时间复...动态时间规整算法(Dynamic Time Warping,DTW)是语音识别中常用的技术之一。为了提升因数据量增加以及算法对数据的高度依赖性所导致的计算性能降低,提出一种针对语音帧的动态时间规整算法硬件架构。识别计算过程中,通过使用算法时间复杂度相对低的下界距离函数(Lower Bound Function,LBF)取代算法时间复杂度高的动态时间规整算法进行语音特征序列全模板匹配,筛选出近似的语音特征序列,经过逻辑组件的流水线调度送入PE-FIFO环形计算单元,进行精准动态时间规整计算。实验使用ARTIX-7 XC7A35T器件进行板级验证,平均耗时4.58 ms,相较于同类型硬件识别方案速度提升4倍以上,识别率达到91%。展开更多
为实现急弯路段的追尾碰撞风险主动防控,提出了一种基于多源数据融合的追尾冲突动态预测方法。首先,基于无人机、毫米波雷达等采集的车辆运行数据,提出了适用于急弯路段交通流特征的追尾冲突判别模型及冲突等级阈值划分标准,分析了急弯...为实现急弯路段的追尾碰撞风险主动防控,提出了一种基于多源数据融合的追尾冲突动态预测方法。首先,基于无人机、毫米波雷达等采集的车辆运行数据,提出了适用于急弯路段交通流特征的追尾冲突判别模型及冲突等级阈值划分标准,分析了急弯路段的追尾冲突空间分布特征。然后,筛选车型、大车比率、断面速度差等13个交通流特征指标作为输入变量,以粒子群算法为基础,分别构建了其与BP神经网络、随机森林、支持向量机算法的追尾冲突动态组合预测模型,并根据混淆矩阵和曲线下面积评估各模型的预测性能,利用黑箱解释方法分析冲突发生概率的显著性影响因素及影响程度。结果表明:相较于平直或一般弯道路段,急弯路段的追尾冲突TTC(Time to Collision)值更小,出弯缓和曲线段冲突更为严重,且弯道内侧碰撞风险最高;粒子群-随机森林模型的追尾冲突预测性能最佳,灵敏度达90.70%;急弯路段追尾冲突受车辆平均车头间距的影响程度最大,当平均车头间距为25 m左右时,冲突发生概率最小,向心加速度均值、速度均值等因素亦对其有显著影响。展开更多
文摘为实现急弯路段的追尾碰撞风险主动防控,提出了一种基于多源数据融合的追尾冲突动态预测方法。首先,基于无人机、毫米波雷达等采集的车辆运行数据,提出了适用于急弯路段交通流特征的追尾冲突判别模型及冲突等级阈值划分标准,分析了急弯路段的追尾冲突空间分布特征。然后,筛选车型、大车比率、断面速度差等13个交通流特征指标作为输入变量,以粒子群算法为基础,分别构建了其与BP神经网络、随机森林、支持向量机算法的追尾冲突动态组合预测模型,并根据混淆矩阵和曲线下面积评估各模型的预测性能,利用黑箱解释方法分析冲突发生概率的显著性影响因素及影响程度。结果表明:相较于平直或一般弯道路段,急弯路段的追尾冲突TTC(Time to Collision)值更小,出弯缓和曲线段冲突更为严重,且弯道内侧碰撞风险最高;粒子群-随机森林模型的追尾冲突预测性能最佳,灵敏度达90.70%;急弯路段追尾冲突受车辆平均车头间距的影响程度最大,当平均车头间距为25 m左右时,冲突发生概率最小,向心加速度均值、速度均值等因素亦对其有显著影响。