期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MN-HDRM:长短兴趣多神经网络混合动态推荐模型 被引量:20
1
作者 冯永 张备 +2 位作者 强保华 张逸扬 尚家兴 《计算机学报》 EI CSCD 北大核心 2019年第1期16-28,共13页
动态推荐系统通过学习动态变化的兴趣特征来考虑推荐系统中的动态因素,实现推荐任务随着时间变化而实时更新.该文提出一种携带历史元素的循环神经网络(Recurrent Neural Networks,简称RNN)推荐模型负责用户短期动态兴趣建模,而利用基于... 动态推荐系统通过学习动态变化的兴趣特征来考虑推荐系统中的动态因素,实现推荐任务随着时间变化而实时更新.该文提出一种携带历史元素的循环神经网络(Recurrent Neural Networks,简称RNN)推荐模型负责用户短期动态兴趣建模,而利用基于前馈神经网络(Feedforward Neural Networks,简称FNN)的推荐模型对用户长期兴趣建模.通过两种神经网络的融合,该文构建了一个兼顾用户短期动态兴趣和稳定长期兴趣的多神经网络混合动态推荐模型(Hybrid Dynamic Recommendation Model based on Multiple Neural Networks,简称MN-HDRM).实验结果表明相对于目前比较流行的多种动态推荐算法:TimeSVD++、基于HMM(Hidden Markov Model)的推荐模型、基于RNN(Recurrent Neural Networks)的推荐模型、基于LSTM(Long Short-Term Memory)的推荐模型和STG(Session-based Temporal Graph)推荐模型,MN-HDRM在精确率、召回率和平均倒数排名等多项评价指标上展现出更加优越的性能. 展开更多
关键词 循环神经网络 前馈神经网络 动态推荐模型 长短期兴趣 时间因素
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部