期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进蝙蝠算法优化LSTM网络的短时客流预测
被引量:
19
1
作者
段中兴
温倩
+2 位作者
周孟
宋婕菲
王剑
《铁道科学与工程学报》
CAS
CSCD
北大核心
2021年第11期2833-2840,共8页
准确地预测地铁站短时客流量,对地铁站通风空调系统的节能优化具有重要意义。充分考虑地铁客流量非线性、随机性、周期性等特点,提出一种基于改进蝙蝠算法(IBA)优化长短期记忆(LSTM)神经网络的短时客流量预测模型(IBALSTM)。引入反向学...
准确地预测地铁站短时客流量,对地铁站通风空调系统的节能优化具有重要意义。充分考虑地铁客流量非线性、随机性、周期性等特点,提出一种基于改进蝙蝠算法(IBA)优化长短期记忆(LSTM)神经网络的短时客流量预测模型(IBALSTM)。引入反向学习、动态自适应惯性权重与拉格朗日插值法等方法改进蝙蝠的全局搜索与局部寻优能力,克服标准蝙蝠算法易早熟、易陷入局部最优值的问题;利用改进的蝙蝠算法对LSTM网络的隐含层节点数、迭代次数、初始学习率、学习率下降因子4个参数进行优化;利用西安某地铁站自动检票系统(AFC)采集的客流数据,对模型的有效性进行检验。实验结果表明:该预测模型在均方误差、均方根误差、平均绝对百分比误差等方面均优于标准蝙蝠-LSTM模型、LSTM预测模型、BP预测模型及BP-Adaboost预测模型,所提出的方法可有效应用于短时客流量预测。
展开更多
关键词
短时客流量预测
改进蝙蝠算法
LSTM网络
反向学习
动态惯性自适应权重
拉格朗日插值法
在线阅读
下载PDF
职称材料
题名
基于改进蝙蝠算法优化LSTM网络的短时客流预测
被引量:
19
1
作者
段中兴
温倩
周孟
宋婕菲
王剑
机构
西安建筑科技大学信息与控制工程学院
西部绿色建筑国家重点实验室
出处
《铁道科学与工程学报》
CAS
CSCD
北大核心
2021年第11期2833-2840,共8页
基金
国家自然科学基金资助项目(51678470)。
文摘
准确地预测地铁站短时客流量,对地铁站通风空调系统的节能优化具有重要意义。充分考虑地铁客流量非线性、随机性、周期性等特点,提出一种基于改进蝙蝠算法(IBA)优化长短期记忆(LSTM)神经网络的短时客流量预测模型(IBALSTM)。引入反向学习、动态自适应惯性权重与拉格朗日插值法等方法改进蝙蝠的全局搜索与局部寻优能力,克服标准蝙蝠算法易早熟、易陷入局部最优值的问题;利用改进的蝙蝠算法对LSTM网络的隐含层节点数、迭代次数、初始学习率、学习率下降因子4个参数进行优化;利用西安某地铁站自动检票系统(AFC)采集的客流数据,对模型的有效性进行检验。实验结果表明:该预测模型在均方误差、均方根误差、平均绝对百分比误差等方面均优于标准蝙蝠-LSTM模型、LSTM预测模型、BP预测模型及BP-Adaboost预测模型,所提出的方法可有效应用于短时客流量预测。
关键词
短时客流量预测
改进蝙蝠算法
LSTM网络
反向学习
动态惯性自适应权重
拉格朗日插值法
Keywords
short-term passenger flow forecast
improved bat algorithm
LSTM network
opposition-based learning
dynamic adaptive inertia weight
Lagrangian interpolation
分类号
U231 [交通运输工程—道路与铁道工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进蝙蝠算法优化LSTM网络的短时客流预测
段中兴
温倩
周孟
宋婕菲
王剑
《铁道科学与工程学报》
CAS
CSCD
北大核心
2021
19
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部