期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
动态属性网络的语义社区发现及演化分析方法
1
作者 贺超波 成其伟 +3 位作者 程俊伟 杨佳琦 程颢 汤庸 《电子学报》 EI CAS CSCD 北大核心 2024年第11期3757-3768,共12页
动态属性网络的语义社区发现及演化分析具有重要研究价值,其包含动态社区发现、社区语义解释及社区演化分析三个任务,但现有方法均难以同时实现.针对该问题,提出一种基于联合非负矩阵分解的方法DANNMF(NMF for Dynamic Attributed Netwo... 动态属性网络的语义社区发现及演化分析具有重要研究价值,其包含动态社区发现、社区语义解释及社区演化分析三个任务,但现有方法均难以同时实现.针对该问题,提出一种基于联合非负矩阵分解的方法DANNMF(NMF for Dynamic Attributed Networks).DAN-NMF可以统一集成网络拓扑结构信息、节点属性信息及社区演化平滑约束信息,并利用最大最小化优化框架推导相关因子矩阵的迭代更新规则,从而可以直接获得动态社区发现、社区语义解释及社区演化分析结果.在人工合成和真实的动态属性网络进行大量相关实验,结果表明DAN-NMF比最优的基准方法在准确性指标上至少提高了7.3%.此外,在真实动态属性网络上的相关数据分析结果也表明DAN-NMF能够有效地发现动态社区的演化模式,并提供丰富的社区语义解释. 展开更多
关键词 动态属性网络 动态社区发现 社区语义解释 社区演化分析 非负矩阵分解
在线阅读 下载PDF
属性网络表示学习研究综述
2
作者 刘欣 赵中英 +1 位作者 李智恒 李超 《山东科技大学学报(自然科学版)》 CAS 北大核心 2022年第5期91-101,共11页
属性网络表示学习旨在最大限度保留原始网络特征的同时,利用网络中丰富的结构与属性信息学习节点或边的向量表示,从而将拓扑空间的网络转化到欧式空间,这有利于后续网络分析任务的高效执行,因此受到国内外学者的广泛关注,成为近年来的... 属性网络表示学习旨在最大限度保留原始网络特征的同时,利用网络中丰富的结构与属性信息学习节点或边的向量表示,从而将拓扑空间的网络转化到欧式空间,这有利于后续网络分析任务的高效执行,因此受到国内外学者的广泛关注,成为近年来的研究热点。本研究对属性网络表示学习的代表性方法进行对比研究,首先按照网络的时序性、网络元素的多样性对已有工作进行分类,然后分别阐述了同构属性网络、异构属性网络、动态属性网络的表示学习方法,并对已有方法的核心技术、数据集、评测任务等进行对比研究,最后总结探讨未来可能的研究方向与挑战,旨在为属性网络表示学习的相关研究提供新的思路。 展开更多
关键词 属性网络 表示学习 同构属性网络 异构属性网络 动态属性网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部