期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
Pareto解集旋转的分类多策略预测动态多目标优化
1
作者 李二超 刘辰淼 《计算机工程与应用》 CSCD 北大核心 2024年第22期87-104,共18页
为更有效地解决Pareto解集(Pareto set,PS)旋转的动态多目标优化问题,提出PS旋转的分类多策略预测方法(rotation-based forecasting method,RFM)。将PS的旋转类型分为PS中心点旋转、PS原点旋转和非标准旋转;针对以上不同的PS旋转类型,... 为更有效地解决Pareto解集(Pareto set,PS)旋转的动态多目标优化问题,提出PS旋转的分类多策略预测方法(rotation-based forecasting method,RFM)。将PS的旋转类型分为PS中心点旋转、PS原点旋转和非标准旋转;针对以上不同的PS旋转类型,自适应地选择合适的预测模型,建立不同点集的时间序列,为后续进化提供初始种群。引入拉丁超立方策略(Latin hypercube strategy,LHS)生成的随机种群与上述预测种群共同构建新种群,保证种群的多样性。为验证算法的有效性,将RFM算法与DNSGA-II、PPS、SPPS和MMP算法在8个标准的动态测试函数上进行实验对比。实验结果表明,RFM算法取得了6个最优IGD值、7个最优SP值、3个最优MS值,证明了RFM算法可以更有效地解决基于PS旋转的动态多目标优化问题。同时验证了RFM算法的普适性,在FDA系列函数上进行实验对比,实验结果表明,该算法在处理非旋转的动态多目标优化问题中仍具有较优性能。 展开更多
关键词 动态多目标优化 进化算法 分类预测 Pareto解集旋转
在线阅读 下载PDF
基于Holt差分预测校正的动态多目标优化算法
2
作者 刘志霖 康岚兰 董文永 《计算机应用研究》 CSCD 北大核心 2024年第12期3701-3709,共9页
为高效追踪动态多目标优化问题中随时间或环境变化而不断演变的Pareto前沿,提出了一种新的基于环境感知与预测校正的动态多目标优化算法(HD-DMOEA)。该算法包含三个主要策略:首先使用Wilcoxon符号秩检验对环境变化进行检测,并提出一种... 为高效追踪动态多目标优化问题中随时间或环境变化而不断演变的Pareto前沿,提出了一种新的基于环境感知与预测校正的动态多目标优化算法(HD-DMOEA)。该算法包含三个主要策略:首先使用Wilcoxon符号秩检验对环境变化进行检测,并提出一种新的环境感知算子对环境变化强度进行判定。其次,构建Holt差分预测校正模型预测种群个体在下一个时间窗的位置,并在预测过程中根据参考点进行预测校正,以提高模型预测精度,加快算法寻优速度。另外,提出了一种新的变异方法,该方法根据环境变化强度引入不同的变异个体,以维持种群多样性,从而降低种群陷入局部最优的概率。为验证HD-DMOEA的有效性,将HD-DMOEA与五种最先进的预测算法分别在测试集FDA和dMOP上进行实验对比分析,实验结果表明,HD-DMOEA在搜索过程中能有效动态平衡种群的多样性和收敛性,实现对Pareto前沿的持续高效追踪,并且优于其他五种对比算法。 展开更多
关键词 动态多目标优化 预测校正 环境感知 参考点
在线阅读 下载PDF
目标个数不规则变化的动态多目标优化算法
3
作者 栗三一 刘爽 《计算机科学》 CSCD 北大核心 2024年第S02期172-182,共11页
文中提出了一种基于混合策略的初始种群预测算法(A Hybrid Strategy Based Initial Population Rrediction Algorithm,HIPPA)来解决目标个数随时间不规则变化的动态多目标优化问题。HIPPA依据目标个数判断环境是否发生变化,根据不同的... 文中提出了一种基于混合策略的初始种群预测算法(A Hybrid Strategy Based Initial Population Rrediction Algorithm,HIPPA)来解决目标个数随时间不规则变化的动态多目标优化问题。HIPPA依据目标个数判断环境是否发生变化,根据不同的目标个数划分环境类型。在种群初始化阶段,初始种群由3种机制产生。首先,利用历史种群信息训练改进的神经网络算法,生成一部分初始种群。其次,改进的精英策略利用历史种群信息生成一部分初始种群。最后,使用改进的随机策略生成一部分种群,以保持种群的多样性。本文使用基准实验F1-F5验证所提算法的有效性,并将结果与其他动态优化算法对比。实验结果表明,HIPPA可以更加有效地解决目标个数随时间不规则变化的动态多目标优化问题。 展开更多
关键词 动态多目标优化 神经网络 预测 目标个数不规则变化
在线阅读 下载PDF
免疫克隆算法求解动态多目标优化问题 被引量:32
4
作者 尚荣华 焦李成 +1 位作者 公茂果 马文萍 《软件学报》 EI CSCD 北大核心 2007年第11期2700-2711,共12页
求解动态多目标优化(dynamic multi-objective optimization,简称DMO)问题的主要困难在于目标函数、约束条件或者相关的问题参数是随时间不断变化的.基于免疫克隆选择学说,提出一种用于解决DMO问题的新算法——动态多目标免疫克隆优化(i... 求解动态多目标优化(dynamic multi-objective optimization,简称DMO)问题的主要困难在于目标函数、约束条件或者相关的问题参数是随时间不断变化的.基于免疫克隆选择学说,提出一种用于解决DMO问题的新算法——动态多目标免疫克隆优化(immune clonal algorithm for DMO,简称ICADMO).该算法改进了现有的克隆策略,采用整体克隆的方式;在选择策略上,根据Pareto-占优的概念,将抗体群中的个体分为支配个体和非支配个体,对非支配个体进行选择.采用3个特色算子,使其很好地保持了所得解的多样性、均匀性和收敛性.通过数值实验,与DBM(direction-based method)算法进行比较,结果表明,新算法在收敛性、多样性以及解分布的广度方面都体现了很好的性能. 展开更多
关键词 人工免疫系 Pareto-前沿面 动态多目标优化 性能指标
在线阅读 下载PDF
基于引导个体的预测策略求解动态多目标优化问题 被引量:13
5
作者 郑金华 彭舟 +1 位作者 邹娟 申瑞珉 《电子学报》 EI CAS CSCD 北大核心 2015年第9期1816-1825,共10页
很多现实的优化问题都是动态多目标问题,这类问题不仅具有多个目标,并且也受环境的影响不断变化.本文基于引导个体的预测策略提出一种新的求解动态多目标优化问题的策略.通过记录每次环境变化初始时和种群自主进化一小段时间后种群中心... 很多现实的优化问题都是动态多目标问题,这类问题不仅具有多个目标,并且也受环境的影响不断变化.本文基于引导个体的预测策略提出一种新的求解动态多目标优化问题的策略.通过记录每次环境变化初始时和种群自主进化一小段时间后种群中心点位置的前后变化,预测最优解的所在方向.同时根据在该方向上均匀分布的若干检测个体,选出一串非支配的个体作为当前环境下的引导个体.为了避免陷入局部最优,在选出的引导个体周围一个小的区域半径内随机产生若干伴随引导个体.实验结果表明,新策略具有更快的响应环境变化的能力. 展开更多
关键词 动态多目标优化 进化算法 预测 引导个体
在线阅读 下载PDF
基于多粒子群协同的动态多目标优化算法及应用 被引量:21
6
作者 胡成玉 姚宏 颜雪松 《计算机研究与发展》 EI CSCD 北大核心 2013年第6期1313-1323,共11页
在现实生活中大多数多目标优化问题都随时间变化,这就要求优化算法在时间约束内快速找到动态变化Pareto最优解或Pareto边界.基于此,提出一种基于多种群协同的动态多目标粒子群改进算法,旨在利用多种群竞争和协作两种模式互相配合,从而... 在现实生活中大多数多目标优化问题都随时间变化,这就要求优化算法在时间约束内快速找到动态变化Pareto最优解或Pareto边界.基于此,提出一种基于多种群协同的动态多目标粒子群改进算法,旨在利用多种群竞争和协作两种模式互相配合,从而达到快速高效求解动态多目标优化问题的目的,多种群竞争模式主要任务是对解空间进行"勘探"搜索,当竞争失效后,自适应切换到协作模式对解空间进行"开采"搜索.通过对多种群协同搜索概率分析,证明多种群相比单种群具有更高的搜索效率,通过对3类动态多目标测试函数仿真,验证了改进算法的有效性;最后将该方法应用于动态系统PID控制器的参数整定上,得到了较优的控制参数,取得满意的控制效果. 展开更多
关键词 多粒子群协同 动态多目标优化问题 动态系统 PID控制 柯西变异
在线阅读 下载PDF
基于生态策略的动态多目标优化算法 被引量:11
7
作者 张世文 李智勇 +1 位作者 陈少淼 李仁发 《计算机研究与发展》 EI CSCD 北大核心 2014年第6期1313-1330,共18页
动态多目标优化问题(dynamic multi-objective optimization problems,DMOP)的目标函数、约束条件或者问题的相关参数随时间变化,是多目标优化领域非常重要的研究难题,传统方法难以很好地追踪其变化的Pareto前沿.针对动态多目标优化问... 动态多目标优化问题(dynamic multi-objective optimization problems,DMOP)的目标函数、约束条件或者问题的相关参数随时间变化,是多目标优化领域非常重要的研究难题,传统方法难以很好地追踪其变化的Pareto前沿.针对动态多目标优化问题特点,提出了一种基于生态策略的动态多目标优化算法(dynamic multi-objective optimization algorithm based on ecological strategy,ESDMO).各种群可以采取不同的进化策略应对外部环境变化,捕食种群与被捕食群体间的竞争也促进种群不断提高生存力.受此启发,采用了一种多种群协同进化机制与强化学习策略相结合的协同进化计算模型.该算法定义了一种环境自检算子用于检测环境的变化,不同的种群采取不同的生态策略来应对动态环境变化.经过各种类型的动态多目标优化问题测试,实验结果表明所提出的算法具有更好的解集多样性、均匀性和分布性,验证了该算法对于解决动态多目标优化问题是有效的. 展开更多
关键词 动态多目标优化 PARETO前沿 协同进化 生态策略 进化算法
在线阅读 下载PDF
动态多目标优化的运动物体图像分割 被引量:13
8
作者 赵东 赵宏伟 于繁华 《光学精密工程》 EI CAS CSCD 北大核心 2015年第7期2109-2116,共8页
对小区背景下运动物体图像进行分割时多使用单目标或多目标优化方法,这类方法不能有效适应目标的动态变化,因此本文提出一种动态多目标图像分割优化方法。该方法将时间及环境动态因素作为动态因子,利用K均值(KMeans)算法和和模糊C均值(F... 对小区背景下运动物体图像进行分割时多使用单目标或多目标优化方法,这类方法不能有效适应目标的动态变化,因此本文提出一种动态多目标图像分割优化方法。该方法将时间及环境动态因素作为动态因子,利用K均值(KMeans)算法和和模糊C均值(FCM)聚类算法构造多目标函数;结合动态多目标粒子群算法(DMPSO),使用背景差分法定义环境变化规则,实现动态多目标的图像分割。根据DMPSO算法优化后的聚类结果,分别与K-Means和FCM聚类方法得到的结果进行了对比。结果表明,动态多目标优化的Pareto最优解集分布均匀,图像分割准确率可达到95%,对图像识别的准确率可达到90%,具有较高的识别能力,能满足确定背景下运动物体的准确识别。 展开更多
关键词 图像分割 图像聚类 运动目标 动态多目标优化 粒子群算法
在线阅读 下载PDF
动态多目标优化研究综述 被引量:54
9
作者 刘若辰 李建霞 +1 位作者 刘静 焦李成 《计算机学报》 EI CSCD 北大核心 2020年第7期1246-1278,共33页
现实生活中,存在许多动态多目标优化问题(Dynamic Multi-objective Optimization Problems,DMOPs),这类问题的目标函数之间相互矛盾,并且目标函数、约束或者参数都可能随着时间的变化而发生变化.这种随时间不断变化的特性,给解决DMOPs... 现实生活中,存在许多动态多目标优化问题(Dynamic Multi-objective Optimization Problems,DMOPs),这类问题的目标函数之间相互矛盾,并且目标函数、约束或者参数都可能随着时间的变化而发生变化.这种随时间不断变化的特性,给解决DMOPs带来了挑战,算法不仅要能够追踪到最优解,同时还要求算法能够快速地对发生的变化做出响应.本文对动态多目标优化(Dynamic Multi-objective Optimization,DMO)的研究进行了比较全面的综述,具体内容如下:(1)描述了DMO的相关理论背景;(2)阐述了DMOPs的分类并对现有的基准问题做了分类归纳;(3)详细讨论了DMO研究的发展概况;(4)对DMO算法的性能评价指标进行了归类介绍;(5)通过实验对比了主流DMO算法的性能;(6)总结了DMO算法在一些领域的应用;(7)分析了解决DMOPs存在的挑战以及诸多难题. 展开更多
关键词 动态多目标优化 多目标优化 PARETO最优 测试函数 性能指标 实际应用
在线阅读 下载PDF
动态多目标优化的进化算法及其收敛性分析 被引量:22
10
作者 刘淳安 王宇平 《电子学报》 EI CAS CSCD 北大核心 2007年第6期1118-1121,共4页
给出了动态多目标优化问题的一种新解法.首先对时间变量进行了等区间离散化,在得到的子区间(称为环境)上定义了种群的静态序值方差和静态密度方差.然后把动态多目标优化问题近似地转化成了若干个两个目标的静态优化问题.在给出的一种能... 给出了动态多目标优化问题的一种新解法.首先对时间变量进行了等区间离散化,在得到的子区间(称为环境)上定义了种群的静态序值方差和静态密度方差.然后把动态多目标优化问题近似地转化成了若干个两个目标的静态优化问题.在给出的一种能自动检测环境变化的应答算子下,提出了一种动态多目标进化算法,同时证明了算法的收敛性.计算机仿真表明新算法对动念多目标优化问题是有效的. 展开更多
关键词 动态多目标优化 进化算法 均匀性分布
在线阅读 下载PDF
免疫遗忘动态多目标优化 被引量:3
11
作者 尚荣华 马文萍 +1 位作者 焦李成 公茂果 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期205-209,共5页
许多现实世界中的优化问题都是多个目标的,而且是和时间因素有关的,抽象成数学模型就是动态的多目标优化问题,基于免疫遗忘概念和免疫应答的动态过程,提出了一种用于解决动态多目标优化问题的新的人工免疫系统算法-免疫遗忘动态多... 许多现实世界中的优化问题都是多个目标的,而且是和时间因素有关的,抽象成数学模型就是动态的多目标优化问题,基于免疫遗忘概念和免疫应答的动态过程,提出了一种用于解决动态多目标优化问题的新的人工免疫系统算法-免疫遗忘动态多目标优化(IFDMO)算法.并采用了两集合覆盖这一评价参数,对算法进行了定量的描述.这一参数用于测量在每一个时间步骤得到的最优解向着Pareto-最优面的逼近程度.并将该算法与另外一种算法CSADMO进行了比较,CSADMO是最近提出的一种用于解决动态多目标优化问题的方法,CSADMO在保持所得前沿面的均匀性,多样性及向着Pareto-最优面的逼近性方面都体现出了很好的性质.实验结果表明,在每。时间步骤中,与CSADMO相比,IFDMO获得的解能更好的向着Pareto-最优面逼近,而且解得分布也更加均匀,范围也更加宽广. 展开更多
关键词 人工 免疫系统 免疫遗忘 动态多目标优化 性能评价
在线阅读 下载PDF
基于正交设计的动态多目标优化算法 被引量:3
12
作者 李智勇 李峥 +1 位作者 陈恒勇 张世文 《计算机工程与应用》 CSCD 北大核心 2016年第14期42-49,共8页
提出了一种基于正交设计的动态多目标优化算法(ODMOA),当环境变化时通过分析动态多目标优化问题的特点,利用历史信息对新环境下的Pareto最优解集进行预测,得到一个新的预测种群;否则在静态环境下使用正交试验法在解空间内进行系统且高... 提出了一种基于正交设计的动态多目标优化算法(ODMOA),当环境变化时通过分析动态多目标优化问题的特点,利用历史信息对新环境下的Pareto最优解集进行预测,得到一个新的预测种群;否则在静态环境下使用正交试验法在解空间内进行系统且高效的搜索,使算法能够在当前环境下快速收敛到最优解。进行了多组对比试验,验证了该算法的有效性。 展开更多
关键词 动态多目标优化 PARETO最优解集 正交设计 环境检测
在线阅读 下载PDF
一类带约束动态多目标优化问题的进化算法 被引量:3
13
作者 杨亚强 刘淳安 《计算机工程与应用》 CSCD 2012年第21期45-48,74,共5页
动态多目标约束优化问题是一类NP-Hard问题,定义了动态环境下进化种群中个体的序值和个体的约束度,结合这两个定义给出了一种选择算子。在一种环境变化判断算子下给出了求解环境变量取值于正整数集+的一类带约束动态多目标优化问题的... 动态多目标约束优化问题是一类NP-Hard问题,定义了动态环境下进化种群中个体的序值和个体的约束度,结合这两个定义给出了一种选择算子。在一种环境变化判断算子下给出了求解环境变量取值于正整数集+的一类带约束动态多目标优化问题的进化算法。通过几个典型的Benchmark函数对算法的性能进行了测试,其结果表明新算法能够较好地求出带约束动态多目标优化问题在不同环境下质量较好、分布较均匀的Pareto最优解集。 展开更多
关键词 约束动态多目标优化 进化算法 环境变化 PARETO最优解
在线阅读 下载PDF
一种求解动态多目标优化问题的粒子群算法 被引量:8
14
作者 刘淳安 《系统仿真学报》 CAS CSCD 北大核心 2011年第2期288-293,共6页
针对时间变量取值于正有理数集+、自变量的维数随时间可发生变化的一类动态多目标优化问题提出了一种求解的粒子群算法。该算法通过引入新的变异算子和自适应动态变化惯性因子,有效地避免了粒子群算法易陷入局部最优的缺陷;同时,给出了... 针对时间变量取值于正有理数集+、自变量的维数随时间可发生变化的一类动态多目标优化问题提出了一种求解的粒子群算法。该算法通过引入新的变异算子和自适应动态变化惯性因子,有效地避免了粒子群算法易陷入局部最优的缺陷;同时,给出了一种判断环境变化的有效规则,极大地增强了算法跟踪问题环境变化的能力,提高了算法的有效性。计算机仿真表明新算法对动态多目标优化问题的求解十分有效。 展开更多
关键词 动态多目标优化 粒子群算法 变维空间 PARETO最优解
在线阅读 下载PDF
基于个体预测的动态多目标优化算法 被引量:1
15
作者 王万良 陈忠馗 +2 位作者 吴菲 王铮 俞梦娇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第11期2133-2146,共14页
为了快速追踪随环境变化的动态多目标优化问题的Pareto前沿,提出基于个体预测的动态多目标优化算法(IPS).利用参考点联系算法筛选出特殊点,该特殊点具有良好的收敛性和多样性,通过对特殊点集的预测快速响应环境变化.提出针对种群中心点... 为了快速追踪随环境变化的动态多目标优化问题的Pareto前沿,提出基于个体预测的动态多目标优化算法(IPS).利用参考点联系算法筛选出特殊点,该特殊点具有良好的收敛性和多样性,通过对特殊点集的预测快速响应环境变化.提出针对种群中心点预测的反馈校正机制,在预测非支配解集的过程中,对预测步长进行反馈校正,从而使预测更加准确;为了避免算法陷入局部最优,提出混合多样性维持机制,引入由拉丁超立方抽样和精度可控的突变策略分别产生的随机个体,以提高种群的多样性.将所提算法与其他4种动态多目标优化算法进行对比分析,实验结果表明,IPS能够平衡种群的多样性和收敛性,在FDA、DMOP、F5~F10系列问题上,实验结果优于其他4种算法. 展开更多
关键词 动态多目标优化 参考点联系算法 特殊点 反馈校正 多样性
在线阅读 下载PDF
基于新评价指标自适应预测的动态多目标优化算法 被引量:1
16
作者 李二超 张生辉 《计算机应用》 CSCD 北大核心 2023年第10期3178-3187,共10页
现实生活中的多目标优化问题(MOP)大多为动态多目标优化问题(DMOP),此类问题的目标函数、约束条件和决策变量都可能随时间的变化而发生改变,这需要算法在环境变化后快速适应新的环境,且在保证Pareto解集多样性的同时快速收敛到新的Paret... 现实生活中的多目标优化问题(MOP)大多为动态多目标优化问题(DMOP),此类问题的目标函数、约束条件和决策变量都可能随时间的变化而发生改变,这需要算法在环境变化后快速适应新的环境,且在保证Pareto解集多样性的同时快速收敛到新的Pareto前沿。针对此问题,提出一种基于新评价指标自适应预测的动态多目标优化算法(NEI-APDMOA)。首先,在种群非支配排序过程中提出一种优于拥挤度的新评价指标,并分阶段平衡收敛快速性和种群多样性,使种群的收敛过程更加合理;其次,提出一种可判断环境变化强弱的因子,为预测阶段提供有价值信息,并引导种群更好地适应环境变化;最后,根据环境变化因子匹配3种更加合理的预测策略,使种群快速响应环境变化。将NEI-APDMOA与DNSGA-Ⅱ-A(Dynamic Non-dominated Sorting Genetic Algorithm-Ⅱ-A)、DNSGA-Ⅱ-B(Dynamic Non-dominated Sorting Genetic Algorithm-Ⅱ-B)和PPS(Population Prediction Strategy)算法在9个标准动态测试函数上进行对比。实验结果表明,NEI-APDMOA分别在9、4和8个测试函数上取得了最优的平均反世代距离(IGD)值、平均间距(SP)值和平均世代距离(GD)值,可以更快地响应环境变化。 展开更多
关键词 动态多目标优化 进化算法 评价指标 非支配排序 预测策略
在线阅读 下载PDF
基于约束骨干粒子群算法的化工过程动态多目标优化 被引量:6
17
作者 王珊珊 杜文莉 +2 位作者 陈旭 徐斌 钱锋 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期449-457,共9页
大多数化工过程是动态过程,需同时优化多个目标,从而带来复杂的约束多目标动态优化问题。因此提出了一种动态约束多目标骨干粒子群算法,即采用一种新型约束处理方法,结合Pareto支配和ε约束支配技术的双档集机制;针对约束优化问题寻优... 大多数化工过程是动态过程,需同时优化多个目标,从而带来复杂的约束多目标动态优化问题。因此提出了一种动态约束多目标骨干粒子群算法,即采用一种新型约束处理方法,结合Pareto支配和ε约束支配技术的双档集机制;针对约束优化问题寻优难度更大,更易陷入局部最优的特点,采用局部搜索和混合变异策略,并自适应调整搜索步长,提高算法的探索和开发能力;采用分段线性函数参数化方法,构建一种动态约束多目标粒优化算法,并将其用于解决间歇反应器的动态多目标优化问题。测试实验表明:与NSGA-II和自适应差分进化算法(SADE-εCD)比较,该算法具有更优秀的收敛性与分布性;应用到化工过程多目标动态优化问题实例进行比较表明,多目标骨干粒子群算法在约束多目标动态优化问题的求解中表现出更好的应用前景。 展开更多
关键词 约束处理 动态多目标优化 骨干粒子群算法 化工过程
在线阅读 下载PDF
组合预测策略的动态多目标优化算法 被引量:4
18
作者 唐晓乐 王宏伟 +1 位作者 夏浩 罗洪平 《计算机工程与设计》 北大核心 2022年第7期1930-1940,共11页
为适应较为复杂的动态环境,结合动态优化问题的可预测特性,提出一种基于组合预测策略的多目标优化算法。当检测到环境变化时,对当前Pareto解集进行聚类,求得多个代表个体充分表示其流形,并求得Pareto解集质心;通过惯性预测方法与组合预... 为适应较为复杂的动态环境,结合动态优化问题的可预测特性,提出一种基于组合预测策略的多目标优化算法。当检测到环境变化时,对当前Pareto解集进行聚类,求得多个代表个体充分表示其流形,并求得Pareto解集质心;通过惯性预测方法与组合预测模型分别对代表个体与质心进行预测,生成新环境下的初始种群。该策略能够有指导性地增加种群多样性,更加精确地跟踪最优解。对所提预测策略与4种流行的动态多目标优化算法进行了比较,仿真结果表明,所提算法在处理动态多目标优化问题方面具有较优性能。 展开更多
关键词 动态多目标优化 聚类 组合预测 PS流形 历史信息
在线阅读 下载PDF
基于数字孪生的铣削参数动态多目标优化策略 被引量:17
19
作者 巩超光 胡天亮 叶瑛歆 《计算机集成制造系统》 EI CSCD 北大核心 2021年第2期478-486,共9页
为解决机床性能动态变化过程中的铣削参数动态多目标优化问题,提出一种基于数字孪生的铣削参数动态多目标优化策略。首先采用梯度提升回归树算法构建加工参数与加工结果间的非线性映射关系;然后基于动态非支配排序遗传算法进行铣削参数... 为解决机床性能动态变化过程中的铣削参数动态多目标优化问题,提出一种基于数字孪生的铣削参数动态多目标优化策略。首先采用梯度提升回归树算法构建加工参数与加工结果间的非线性映射关系;然后基于动态非支配排序遗传算法进行铣削参数动态寻优;最后在Pareto最优解的基础上,结合层次分析法和理想解相似度顺序偏好法建立决策分析模型并进行可视化分析排序。该策略能够针对机床整个运行时段提供符合当前机床特性的最优铣削参数取值方案,从而保证加工质量和加工效率。 展开更多
关键词 数字孪生 铣削参数 梯度提升回归树 动态多目标优化
在线阅读 下载PDF
使用新预测模型的动态多目标优化算法 被引量:6
20
作者 李智翔 李赟 +1 位作者 贺亮 沈超 《西安交通大学学报》 EI CAS CSCD 北大核心 2018年第10期8-15,共8页
针对实际应用中动态多目标优化算法对快速变化的最优解集跟踪能力不强的问题,提出了一种使用结合中心点预测值和垂直扰动分量的新预测模型的动态多目标优化算法。首先,计算变化前最优解集的中心点作为预测对象,改变了通常使用全部解进... 针对实际应用中动态多目标优化算法对快速变化的最优解集跟踪能力不强的问题,提出了一种使用结合中心点预测值和垂直扰动分量的新预测模型的动态多目标优化算法。首先,计算变化前最优解集的中心点作为预测对象,改变了通常使用全部解进行预测的方式,提升了算法效率;其次,结合算法迭代的历史信息,选取位置、速度、加速度作为预测的状态向量,保证了算法对大多数情形下解集整体变化的跟踪预测能力;最后,为预测的新解添加了垂直于预测变化方向的超平面随机扰动,增强了解集的多样性,进而提升了算法收敛速度。实验结果表明,该算法在75%的测试函数集上的性能优于其他3种经典的动态多目标优化算法,其耗时较经典的基于卡尔曼滤波预测的动态多目标优化算法平均减少了39%。 展开更多
关键词 动态多目标优化 进化算法 卡尔曼滤波 预测模型
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部