期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
利用动态多池卷积神经网络的情感分析模型 被引量:4
1
作者 喻涛 罗可 《计算机科学与探索》 CSCD 北大核心 2018年第7期1182-1190,共9页
基于词向量的卷积神经网络方法在情感分析研究中取得了很好的效果。然而,该方法从上下文学习的语义词向量忽略了词语本身的情感极性,传统的卷积神经网络模型未考虑句子的结构信息。针对这两方面的不足,提出了一种基于情感词向量的动态... 基于词向量的卷积神经网络方法在情感分析研究中取得了很好的效果。然而,该方法从上下文学习的语义词向量忽略了词语本身的情感极性,传统的卷积神经网络模型未考虑句子的结构信息。针对这两方面的不足,提出了一种基于情感词向量的动态多池卷积神经网络情感分析模型,利用skip-gram模型和情感词典来训练情感词向量,并采用动态多池的策略来分割句子,保留了多个最大特征值。实验结果表明,动态多池卷积神经网络模型在情感分析任务上的准确率较机器学习模型和传统卷积神经网络模型都有显著提升。 展开更多
关键词 情感分析 深度学习 情感词向量 卷积神经网络 动态多
在线阅读 下载PDF
基于改进卷积神经网络的化纤丝饼表面缺陷识别 被引量:16
2
作者 王泽霞 陈革 陈振中 《纺织学报》 EI CAS CSCD 北大核心 2020年第4期39-44,共6页
针对传统人工检测化纤丝饼表面缺陷方法的不足,提出改进的卷积神经网络对正常以及3种常见缺陷丝饼进行分类识别。首先对采集的丝饼图像进行分块处理,然后利用改进的卷积神经网络进行特征提取,采用全局最大池化层代替全连接层,增强了图... 针对传统人工检测化纤丝饼表面缺陷方法的不足,提出改进的卷积神经网络对正常以及3种常见缺陷丝饼进行分类识别。首先对采集的丝饼图像进行分块处理,然后利用改进的卷积神经网络进行特征提取,采用全局最大池化层代替全连接层,增强了图像对空间变换的鲁棒性,减少了模型参数,并利用softmax分类器进行分类。最后在网络学习过程中提出主动学习方法,用少量标注样本对网络进行训练,选出对提升网络性能最具价值的样本进行标注并加入到训练样本中进行训练检测。结果表明,该方法可有效实现丝饼的缺陷识别,识别准确率达到97.1%,并有效减少了网络所需的标注样本数量,节省大量的标注成本,具有一定的通用性。 展开更多
关键词 纤丝饼 缺陷识别 图像分块 卷积神经网络 全局最大 主动学习方法
在线阅读 下载PDF
基于语言模型及循环卷积神经网络的事件检测 被引量:4
3
作者 施喆尔 陈锦秀 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第3期442-448,共7页
目前,事件检测的难点在于一词多义和多事件句的检测.为了解决这些问题,提出了一个新的基于语言模型的带注意力机制的循环卷积神经网络模型(recurrent and convolutional neural network with attention based on language models,LM-ARC... 目前,事件检测的难点在于一词多义和多事件句的检测.为了解决这些问题,提出了一个新的基于语言模型的带注意力机制的循环卷积神经网络模型(recurrent and convolutional neural network with attention based on language models,LM-ARCNN).该模型利用语言模型计算输入句子的词向量,将句子的词向量输入长短期记忆网络获取句子级别的特征,并使用注意力机制捕获句子级别特征中与触发词相关性高的特征,最后将这两部分的特征输入到包含多个最大值池化层的卷积神经网络,提取更多上下文有效组块.在ACE2005英文语料库上进行实验,结果表明,该模型的 F 1 值为74.4%,比现有最优的文本嵌入增强模型(DEEB)高0.4%. 展开更多
关键词 事件检测 语言模型词嵌入 长短期记忆网络 动态多池化卷积神经网络 注意力机制
在线阅读 下载PDF
基于感兴趣区域卷积神经网络的车辆检索方法 被引量:1
4
作者 杨东芳 白艳宇 《计算机工程与设计》 北大核心 2017年第8期2276-2280,F0003,共6页
为降低车辆检索的误检率并提高检索效率,对块卷积神经网络进行优化,提出一种车辆检索方法。增加感兴趣区域输入层、感兴趣区域池化层和目标包围盒输出层,提高传统块卷积神经网络模型的运算效率和分类性能;采用优化的模型进行车辆检索,... 为降低车辆检索的误检率并提高检索效率,对块卷积神经网络进行优化,提出一种车辆检索方法。增加感兴趣区域输入层、感兴趣区域池化层和目标包围盒输出层,提高传统块卷积神经网络模型的运算效率和分类性能;采用优化的模型进行车辆检索,依据边缘检测、轮廓提取获取感兴趣区域,通过优化的模型提取特征和进行特征分类,输出车辆目标及其位置。实验结果表明,该方法的车辆检索误检率和检索效率优于目前主流车辆检索方法。 展开更多
关键词 卷积神经网络 车辆检索 最大 后向传播 轮廓提取
在线阅读 下载PDF
关联语义结合卷积神经网络的文本分类方法 被引量:12
5
作者 魏勇 《控制工程》 CSCD 北大核心 2018年第2期367-370,共4页
针对传统文本分类方法中没有考虑单词语义信息的问题,提出一种结合关联语义和卷积神经网络(CNN)的文本分类方法。首先,对文本进行预处理提取出词干。然后,将每个单词与其相关联的上下文单词相结合,以此构建包含语义信息的词向量。接着... 针对传统文本分类方法中没有考虑单词语义信息的问题,提出一种结合关联语义和卷积神经网络(CNN)的文本分类方法。首先,对文本进行预处理提取出词干。然后,将每个单词与其相关联的上下文单词相结合,以此构建包含语义信息的词向量。接着,将文本的词向量矩阵输入到CNN中,通过卷积层和最大池化层来获得最佳特征,通过输出层获得分类概率。最后,以最小化代价函数来训练CNN模型,以此构建最终的文本分类器。在2个中文数据集上的实验结果表明,该方法能够实现文本的准确分类,具有可行性和有效性。 展开更多
关键词 文本分类 关联语义 卷积神经网络 最大
在线阅读 下载PDF
基于稀疏局部嵌入深度卷积网络的冷水机组故障诊断方法 被引量:11
6
作者 刘旭婷 李益国 +2 位作者 孙栓柱 刘西陲 沈炯 《化工学报》 EI CAS CSCD 北大核心 2018年第12期5155-5163,共9页
针对于冷水机组提出一种基于稀疏局部嵌入深度卷积网络(sparsely local embedding network,SLENet)的故障诊断方法。采用稀疏局部嵌入方法代替卷积核,对输入数据进行特征选择,避免了复杂的训练和调参过程。另外采用空间金字塔最大池化... 针对于冷水机组提出一种基于稀疏局部嵌入深度卷积网络(sparsely local embedding network,SLENet)的故障诊断方法。采用稀疏局部嵌入方法代替卷积核,对输入数据进行特征选择,避免了复杂的训练和调参过程。另外采用空间金字塔最大池化作为网络的输出层,减少了网络的输出维数和分类器的计算量。针对美国采暖、制冷与空调工程师学会提供的冷水机组的典型故障数据进行分类,结果表明,该方法相比深度卷积网络(CNN)和支持向量机(SVM)方法具有更高的故障诊断精度。 展开更多
关键词 算法 神经网络 安全 故障诊断 稀疏局部嵌入 深度卷积网络 空间金字塔最大
在线阅读 下载PDF
面向文本分类的多头注意力池化RCNN模型 被引量:6
7
作者 翟一鸣 王斌君 +1 位作者 周枝凝 仝鑫 《计算机工程与应用》 CSCD 北大核心 2021年第12期155-160,共6页
针对经典循环卷积神经网络(RCNN)在池化层采用的最大池化策略较为单一,会忽略除最突出特征外的其他特征,影响分类精度的问题,提出基于多头注意力池化的循环卷积神经网络(MHAP-RCNN)模型。多头注意力池化可以充分考虑各特征对分类的贡献... 针对经典循环卷积神经网络(RCNN)在池化层采用的最大池化策略较为单一,会忽略除最突出特征外的其他特征,影响分类精度的问题,提出基于多头注意力池化的循环卷积神经网络(MHAP-RCNN)模型。多头注意力池化可以充分考虑各特征对分类的贡献,且能在训练过程中动态优化,有效缓解最大池化的单一性问题。在三个公开的文本分类数据集上进行实验,结果表明与经典RCNN及其他各模型相比,提出的模型具有更好的文本分类性能。 展开更多
关键词 文本分类 循环卷积神经网络 最大 多头注意力
在线阅读 下载PDF
多孔全卷积网络的语义分割算法研究 被引量:3
8
作者 戴伟达 霍智勇 +1 位作者 严邓涛 陈钊 《南京邮电大学学报(自然科学版)》 北大核心 2018年第4期96-102,共7页
全卷积网络(Fully Convolutional Network,FCN)中由于连续的最大池化和下采样操作造成特征分辨率急剧降低,使最终上采样恢复的特征图失去对图像的细节敏感性。文中采用多孔卷积替代全卷积网络中的标准卷积,从而使得卷积网络在计算特征... 全卷积网络(Fully Convolutional Network,FCN)中由于连续的最大池化和下采样操作造成特征分辨率急剧降低,使最终上采样恢复的特征图失去对图像的细节敏感性。文中采用多孔卷积替代全卷积网络中的标准卷积,从而使得卷积网络在计算特征响应时能精确控制图像的分辨率,同时在不增加参数数量以及计算量的前提下,有效地扩大了滤波器的感受野。数值实验表明,文中算法利用更多的上下文信息获取了更稠密的特征,有效地提高了分割精度。 展开更多
关键词 卷积神经网络 语义分割 最大 感受野 多孔卷积
在线阅读 下载PDF
基于Sobel算子的池化算法设计 被引量:2
9
作者 冯松松 王斌君 《科学技术与工程》 北大核心 2023年第3期1145-1151,共7页
池化算法是卷积神经网络中用于特征降维、参数压缩、扩大感受野的重要一层。针对现有的池化方法没有充分考虑到池化前特征图的整体内容及风格特征分布问题,提出了一种通过Sobel算子对卷积后的特征图计算每个特征点的梯度值,并根据梯度... 池化算法是卷积神经网络中用于特征降维、参数压缩、扩大感受野的重要一层。针对现有的池化方法没有充分考虑到池化前特征图的整体内容及风格特征分布问题,提出了一种通过Sobel算子对卷积后的特征图计算每个特征点的梯度值,并根据梯度值分布确定每个池化窗口取最大值、均值或者最小值的池化算法。该算法充分考虑了特征图池化前后的整体内容及风格特征分布,保持了特征图的整体不变性。实验表明,该池化算法在VGG、ResNet等经典网络架构上取得了优异性能,具有普适性,可用来替代常用的最大池化、平均池化。 展开更多
关键词 卷积神经网络 最大 平均 最小 SOBEL算子
在线阅读 下载PDF
基于联合分量灰度化算法和深度学习的玻璃绝缘子目标识别算法 被引量:12
10
作者 黄新波 高玉菡 +3 位作者 张烨 赵隆 伍逸群 孙苏珍 《电力自动化设备》 EI CSCD 北大核心 2022年第4期203-209,共7页
针对相近色干扰、不同光照条件下玻璃绝缘子颜色特征不明显而无法准确识别的问题,提出一种基于联合分量灰度化算法和深度学习的玻璃绝缘子目标识别算法。首先,提出一种联合分量灰度化算法,通过补偿玻璃绝缘子目标区域的颜色特征实现目... 针对相近色干扰、不同光照条件下玻璃绝缘子颜色特征不明显而无法准确识别的问题,提出一种基于联合分量灰度化算法和深度学习的玻璃绝缘子目标识别算法。首先,提出一种联合分量灰度化算法,通过补偿玻璃绝缘子目标区域的颜色特征实现目标增强;然后,在均匀分块的基础上,采用动态分块阈值进行玻璃绝缘子图像粗分割,并结合玻璃绝缘子的颜色和空间信息等多尺度高维特征,提出一种双尺度分类卷积神经网络算法实现玻璃绝缘子图像细分割;最后,将细分割得到的所有子图像进行合并,实现复杂背景下玻璃绝缘子目标的准确识别。实验结果表明,所提算法能对图像中存在相近色干扰、光照变化影响的玻璃绝缘子目标进行精准识别,且其在Dice参数、杰卡德系数2项识别指标上均达到90%以上,平均识别准确率高达92%。 展开更多
关键词 玻璃绝缘子 联合分量灰度算法 动态分块阈值分割 双尺度分类卷积神经网络 深度学习
在线阅读 下载PDF
基于动态衰减EMA的图像分类算法研究 被引量:2
11
作者 杨晶东 朱锦图 +1 位作者 孙新博 杨文皓 《小型微型计算机系统》 CSCD 北大核心 2020年第7期1524-1529,共6页
内容针对传统指数滑动平均(EMA)算法在AlexNet卷积神经网络的训练后期无法持续优化网络参数,而导致网络过拟合问题.提出一种基于Tanh动态衰减指数滑动平均算法(T-ADEMA),采用变系数Tanh函数作为衰减率函数,根据训练次数动态调整优化参数... 内容针对传统指数滑动平均(EMA)算法在AlexNet卷积神经网络的训练后期无法持续优化网络参数,而导致网络过拟合问题.提出一种基于Tanh动态衰减指数滑动平均算法(T-ADEMA),采用变系数Tanh函数作为衰减率函数,根据训练次数动态调整优化参数,减小数据集中噪声对网络学习影响,提高模型泛化性能.实验结果表明,基于T-ADEMA算法的AlexNet网络在MNIST,CIFAR10,CIFAR100三个数据集上与传统EMA算法相比具有更好的泛化性能和分类正确率. 展开更多
关键词 指数滑动平均 卷积神经网络 动态衰减率 性能
在线阅读 下载PDF
基于改进的双向长短期记忆网络的视频摘要生成模型 被引量:8
12
作者 武光利 李雷霆 +1 位作者 郭振洲 王成祥 《计算机应用》 CSCD 北大核心 2021年第7期1908-1914,共7页
针对传统视频摘要方法往往没有考虑时序信息以及提取的视频特征过于复杂、易出现过拟合现象的问题,提出一种基于改进的双向长短期记忆(BiLSTM)网络的视频摘要生成模型。首先,通过卷积神经网络(CNN)提取视频帧的深度特征,而且为了使生成... 针对传统视频摘要方法往往没有考虑时序信息以及提取的视频特征过于复杂、易出现过拟合现象的问题,提出一种基于改进的双向长短期记忆(BiLSTM)网络的视频摘要生成模型。首先,通过卷积神经网络(CNN)提取视频帧的深度特征,而且为了使生成的视频摘要更具多样性,采用BiLSTM网络将深度特征识别任务转换为视频帧的时序特征标注任务,让模型获得更多上下文信息;其次,考虑到生成的视频摘要应当具有代表性,因此通过融合最大池化在降低特征维度的同时突出关键信息以淡化冗余信息,使模型能够学习具有代表性的特征,而特征维度的降低也减少了全连接层需要的参数,避免了过拟合问题;最后,预测视频帧的重要性分数并转换为镜头分数,以此选取关键镜头生成视频摘要。实验结果表明,在标准数据集TvSum和SumMe上,改进后的视频摘要生成模型能提升生成视频摘要的准确性;而且它的F1-score值也比基于长短期记忆(LSTM)网络的视频摘要模型DPPLSTM在两个数据集上分别提高1.4和0.3个百分点。 展开更多
关键词 视频摘要 卷积神经网络 双向长短期记忆网络 最大
在线阅读 下载PDF
融合Inception V1-CBAM-CNN的轴承剩余寿命预测模型 被引量:7
13
作者 余江鸿 彭雄露 +2 位作者 刘涛 杨文 叶帅 《机电工程》 北大核心 2024年第1期107-114,共8页
针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了... 针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了加权处理,在通道和空间维度对重要特征进行了强化,对次要特征进行了抑制,通过添加改进的InceptionV1模块,提高了CNN通道间信息交互水平,全面提取了退化特征;然后,进行了网络优化,采用全局最大池化(GMP)方法对模型进行了简化,采用Dropout和批量归一化(BN)方法,避免了过拟合,提高了精度,且克服了训练时出现的梯度消失问题;最后,对数据进行了处理,将降噪后的信号重组为三维张量,将其作为HI,构建了退化标签,引入了评价指标,采用PHM2012轴承数据集进行了实验验证,在3种工况下将其与深度神经网络(DNN)、CNN方法、结合注意力机制的残差网络方法(ResNet)进行了对比。研究结果表明:该方法在变负载条件下的平均RMSE为0.033,较其他方法的RMSE值分别降低了86%、78%和69%,在预测精度和泛化能力方面具有明显优势。 展开更多
关键词 滚动轴承 剩余使用寿命 Inception V1模块 卷积注意力机制模块 卷积神经网络 全局最大 批量归一
在线阅读 下载PDF
基于检测增强型YOLOv3-tiny的道路场景行人检测 被引量:5
14
作者 田亮 金积德 郑庆祥 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第4期441-448,共8页
为了给驾驶员提供实时准确的行人信息、减少交通事故的发生,提出一种检测增强型YOLOv3-tiny(detection of enhanced YOLOv3-tiny,DOEYT)行人检测算法.创建鲁棒的特征提取网络,首先使用非对称最大池化进行下采样,防止随着感受野增大行人... 为了给驾驶员提供实时准确的行人信息、减少交通事故的发生,提出一种检测增强型YOLOv3-tiny(detection of enhanced YOLOv3-tiny,DOEYT)行人检测算法.创建鲁棒的特征提取网络,首先使用非对称最大池化进行下采样,防止随着感受野增大行人横向特征的丢失;其次使用Hardswish作为卷积层的激活函数优化网络性能;最后使用GC(globe context)自注意力机制获得全文特征信息.在分类回归网络部分,采用三尺度检测策略,提升小尺度行人目标的检测精度;使用k-means++算法重新生成数据集锚框,提高网络收敛速度.构建行人检测数据集并分为训练集和测试集,对DOEYT算法的性能进行试验验证.结果表明,非对称最大池化、Hardswish函数、GC自注意力机制分别使平均准确率AP提高14.4%、7.9%、10.8%;DOEYT算法在测试集上检测的平均准确率高达91.2%,检测速度为103帧/s,可见该算法可快速准确地检测行人,降低交通事故发生的风险. 展开更多
关键词 行人检测 深度学习 卷积神经网络 非对称最大 激活函数 自注意力机制 多尺度检测 YOLOv3-tiny
在线阅读 下载PDF
基于弱监督的改进Transformer在人群定位中的应用 被引量:3
15
作者 高辉 邓淼磊 +2 位作者 赵文君 陈法权 张德贤 《计算机工程与应用》 CSCD 北大核心 2023年第19期92-98,共7页
针对现有人群定位方法采用伪边界框或预先设计的定位图,需要复杂的预处理和后处理来获得头部位置的问题,提出一种基于弱监督的端到端人群定位网络LocalFormer。在特征提取阶段,将纯Transformer作为骨干网络,并对每个阶段的特征执行全局... 针对现有人群定位方法采用伪边界框或预先设计的定位图,需要复杂的预处理和后处理来获得头部位置的问题,提出一种基于弱监督的端到端人群定位网络LocalFormer。在特征提取阶段,将纯Transformer作为骨干网络,并对每个阶段的特征执行全局最大池化操作,提取更加丰富的人头细节信息。在编码器-解码器阶段,将聚合特征嵌入位置信息作为编码器的输入,且每个解码器层采用一组可训练嵌入作为查询,并将编码器最后一层的视觉特征作为键和值,解码后的特征用于预测置信度得分。通过二值化模块自适应优化阈值学习器,从而精确地二值化置信度图。在不同数据环境下对三个数据集进行实验,结果表明该方法实现了最佳定位性能。 展开更多
关键词 人群定位 弱监督 卷积神经网络 全局最大 视觉Transformer
在线阅读 下载PDF
基于弱监督的改进型GoogLeNet在DR检测中的应用 被引量:2
16
作者 丁英姿 丁香乾 郭保琪 《计算机应用》 CSCD 北大核心 2019年第8期2484-2488,共5页
针对糖尿病视网膜病变分级检测中标定样本少、多目标检测的问题,提出了一种基于改进型GoogLeNet的弱监督目标检测网络。首先,对GoogLeNet网络进行改进,去掉最后一个全连接层并保留检测目标的位置信息,添加全局最大池化层,以sigmoid交叉... 针对糖尿病视网膜病变分级检测中标定样本少、多目标检测的问题,提出了一种基于改进型GoogLeNet的弱监督目标检测网络。首先,对GoogLeNet网络进行改进,去掉最后一个全连接层并保留检测目标的位置信息,添加全局最大池化层,以sigmoid交叉熵作为训练的目标函数以获得带有多种特征位置信息的特征图;然后,基于弱监督方法仅使用类别标签对网络进行训练;其次,设计一种连通区域算法来计算特征连通区域边界坐标集合;最后在待测图片中使用边界框定位病灶。实验结果表明,在小样本条件下,改进模型准确率达到了94.5%,与SSD算法相比,准确率提高了10%。改进模型实现了小样本条件下端到端的病变识别,同时该模型的高准确率保证了模型在眼底筛查中具有应用价值。 展开更多
关键词 糖尿病视网膜病变 弱监督 卷积神经网络 目标检测网络 全局最大
在线阅读 下载PDF
超宽带雷达人体姿态识别方法研究 被引量:2
17
作者 李俊侠 张秦 郑桂妹 《现代电子技术》 2021年第19期1-7,共7页
利用传统摄像头进行人体姿态识别时,容易存在视觉盲区和泄露个人隐私等问题。针对这些问题,利用超宽带雷达具有高分辨率、强穿透性和抗多径干扰等特性,可实现全天时、全天候地对人体姿态进行识别,且对环境要求低、准确率高、保密性好。... 利用传统摄像头进行人体姿态识别时,容易存在视觉盲区和泄露个人隐私等问题。针对这些问题,利用超宽带雷达具有高分辨率、强穿透性和抗多径干扰等特性,可实现全天时、全天候地对人体姿态进行识别,且对环境要求低、准确率高、保密性好。首先结合超宽带雷达系统的特性,对常见的超宽带脉冲信号进行具体分析;然后创新性地将超宽带人体姿态识别的研究方法分为传统机器学习方法和深度学习方法两大类进行综述,对具有代表性的支持向量机(SVM)和卷积神经网络(CNN)进行原理分析和讨论,并给出了基于高斯核的SVM识别流程和改进的CNN网络结构;最后划分了四类超宽带雷达回波信号特征提取算法,提出超宽带雷达人体姿态识别的通用模型,并指出超宽带雷达人体姿态识别亟需解决的问题。 展开更多
关键词 超宽带雷达 人体姿态识别 特征提取 深度学习 支持向量机 卷积神经网络 最大
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部